| 注册
首页|期刊导航|郑州大学学报(理学版)|一种基于分类问题的光滑极限学习机

一种基于分类问题的光滑极限学习机

杨丽明 张思韫 任卓

郑州大学学报(理学版)2016,Vol.48Issue(3):51-56,6.
郑州大学学报(理学版)2016,Vol.48Issue(3):51-56,6.DOI:10.13705/j.issn/1671-6841.2016097

一种基于分类问题的光滑极限学习机

A Smooth Extreme Learning Machine for Classification

杨丽明 1张思韫 1任卓1

作者信息

  • 1. 中国农业大学 理学院 北京100083
  • 折叠

摘要

Abstract

Extreme learning machine ( ELM) had a high learning speed and a good generalization ablity. Smoothing strategy was an important technology for non-smooth problems. By combining a smoothing technique with ELM, a smooth ELM ( SELM) framework was proposed. Moreover, the Newton-Armijo al-gorithm was used to solve the SELM, and resulting algorithm converged globally and quadratically. The proposed SELM had less decision variables and better abitities to deal with nonlinear problems than the existing smooth support vector machine. Numerical experiments demonstrated that the speed of SELM was much faster than that of the existing ELM algorithms based on optimization theory. Compared with other popular support vector machines, the proposed SELM achieved better or similar generalization. The re-sults demonstrated the feasibility and effectiveness of the proposed algorithm.

关键词

极限学习机/光滑化方法/Newton-Armijo算法/神经网络

Key words

extreme learning machine( ELM)/smooth approach/Newton-Armijo algorithm/neural net-works

分类

信息技术与安全科学

引用本文复制引用

杨丽明,张思韫,任卓..一种基于分类问题的光滑极限学习机[J].郑州大学学报(理学版),2016,48(3):51-56,6.

基金项目

国家自然科学基金资助项目(11471010) (11471010)

郑州大学学报(理学版)

OA北大核心CSTPCD

1671-6841

访问量0
|
下载量0
段落导航相关论文