| 注册
首页|期刊导航|计算机工程与应用|基于局部流形重构的半监督多视图图像分类

基于局部流形重构的半监督多视图图像分类

董西伟

计算机工程与应用2016,Vol.52Issue(18):24-30,7.
计算机工程与应用2016,Vol.52Issue(18):24-30,7.DOI:10.3778/j.issn.1002-8331.1603-0086

基于局部流形重构的半监督多视图图像分类

Local manifold reconstruction based semi-supervised multi-view image classification

董西伟1

作者信息

  • 1. 九江学院 信息科学与技术学院,江西 九江 332005; 南京邮电大学 自动化学院,南京 210003
  • 折叠

摘要

Abstract

In order to improve the performance of classification by using information of multi-view features in semi-super-vised scenario, firstly, by minimizing local reconstruction error of input feature vectors, proper edge weights can be learnt for the graph which is generated by using input feature vectors as vertexes of graph. Then, the edge weights are used for semi-supervised learning. This paper applies the manifold structure of input data which is captured by minimizing local reconstruction error of input feature vectors for semi-supervised learning, which is beneficial to improve the accuracy of label prediction in semi-supervised learning. For the using of multi-view features of training images, firstly, with the help of the technique of improved canonical correlation analysis, multi-view features with more discriminant information can be learnt, then the multi-view features with more discriminant information are used for image classification tasks by effectively fusing. Experimental results demonstrate that the proposed method can effectively perform discriminant tasks by well exploring discriminant information of multi-view feature representations of training samples in semi-supervised scenario.

关键词

图像分类/标签传播/典型相关分析/多视图/半监督

Key words

image classification/label propagation/canonical correlation analysis/multi-view/semi-supervised

分类

信息技术与安全科学

引用本文复制引用

董西伟..基于局部流形重构的半监督多视图图像分类[J].计算机工程与应用,2016,52(18):24-30,7.

基金项目

国家自然科学基金(No.61462048);江西省教育厅科学技术研究项目(No.GJJ151076);九江学院科研项目(No.2014KJYB019, No.2014KJYB030,No.2015LGYB26)。 ()

计算机工程与应用

OA北大核心CSCDCSTPCD

1002-8331

访问量0
|
下载量0
段落导航相关论文