| 注册
首页|期刊导航|计算机工程与应用|互信息匹配的半朴素贝叶斯分类器

互信息匹配的半朴素贝叶斯分类器

赵亮 刘建辉 崔彩峰

计算机工程与应用2016,Vol.52Issue(18):84-87,4.
计算机工程与应用2016,Vol.52Issue(18):84-87,4.DOI:10.3778/j.issn.1002-8331.1412-0318

互信息匹配的半朴素贝叶斯分类器

Semi-naive Bayesian classifier matched by mutual information

赵亮 1刘建辉 2崔彩峰2

作者信息

  • 1. 辽宁工程技术大学 研究生院,辽宁 阜新 123000
  • 2. 辽宁工程技术大学 电子与信息工程学院,辽宁 葫芦岛 125000
  • 折叠

摘要

Abstract

Because the class-conditional independence assumption which is the mainly feature of Naive Bayesian classifier is a so strong assumption and difference appears between datasets, the class-conditional independence assumption becomes the entry point of improvement methods. But some researches indicate that the violations of independence assumption do not make so much influence to the classifier as expected. This paper proposes a conditional entropy matching half-naive Bayesian classifier for the purpose of lower posterior probability estimation error. Experiments show that this method can effectively improve the performance of naive Bayesian classifier.

关键词

半朴素贝叶斯分类器/互信息/匹配

Key words

semi-naive Bayesian classifier/mutual information/matching

分类

信息技术与安全科学

引用本文复制引用

赵亮,刘建辉,崔彩峰..互信息匹配的半朴素贝叶斯分类器[J].计算机工程与应用,2016,52(18):84-87,4.

基金项目

国家自然科学基金(No.F020512)。 ()

计算机工程与应用

OA北大核心CSCDCSTPCD

1002-8331

访问量0
|
下载量0
段落导航相关论文