| 注册
首页|期刊导航|现代电子技术|基于强跟踪AUKF的目标跟踪算法

基于强跟踪AUKF的目标跟踪算法

杨倩 王洋 赵红梅 崔光照

现代电子技术2016,Vol.39Issue(17):30-34,5.
现代电子技术2016,Vol.39Issue(17):30-34,5.DOI:10.16652/j.issn.1004-373x.2016.17.008

基于强跟踪AUKF的目标跟踪算法

Target tracking algorithm of AUKF based on strong tracking

杨倩 1王洋 1赵红梅 1崔光照1

作者信息

  • 1. 郑州轻工业学院 电气信息工程学院,河南 郑州 450002
  • 折叠

摘要

Abstract

Since the unscented Kalman filter(UKF)has the problems of non⁃adaptivity of the varying measurement condi⁃tion and uncertain system model in recursive process,and poor tracking effect in the condition of inaccuracy model or undesi⁃rable measurement condition,a new target tracking algorithm(adaptive unscented Kalman filter based on strong tracking: STF⁃AUKF) is proposed. The algorithm is based on the thought of adaptive filtering ,and uses the principle of new interest cova⁃riance matching to establish the adaptive UKF,which has the robustness performance for the undesirable measurement;and ac⁃cording to the thought of improving the strong tracking filtering,it adopts the time⁃varying fading factor to control the matrix gain in real time to deal with the model′s sudden change and ensure the tracking effect. The simulation results show that the STF⁃AUKF algorithm still has better stability and tracking effect for sudden maneuvering of a target.

关键词

目标跟踪/UKF/自适应UKF/强跟踪滤波/时变渐消因子

Key words

target tracking/UKF/adaptive UKF/strong tracking filtering/time-varying fading factor

分类

信息技术与安全科学

引用本文复制引用

杨倩,王洋,赵红梅,崔光照..基于强跟踪AUKF的目标跟踪算法[J].现代电子技术,2016,39(17):30-34,5.

基金项目

国家自然科学基金地区联合基金项目(U1504604);国家自然科学基金青年科学基金项目(61501252);东南大学毫米波国家重点实验室开放课题(K201608);河南省省院科技合作项目(122106000049);郑州市UWB实时定位系统院士工作站(131PYSGZ211);郑州轻工业学院2014年度研究生科技创新基金资助项目 ()

现代电子技术

OA北大核心CSTPCD

1004-373X

访问量0
|
下载量0
段落导航相关论文