| 注册
首页|期刊导航|太赫兹科学与电子信息学报|一种基于半监督AdaBoost模型树的FPGA性能表征方法

一种基于半监督AdaBoost模型树的FPGA性能表征方法

杨立群 李威 黄志洪 孙嘉斌 杨海钢

太赫兹科学与电子信息学报2016,Vol.14Issue(4):647-652,6.
太赫兹科学与电子信息学报2016,Vol.14Issue(4):647-652,6.DOI:10.11805/TKYDA201604.0647

一种基于半监督AdaBoost模型树的FPGA性能表征方法

An FPGA performance characterization approach based on semi-supervised AdaBoost model tree

杨立群 1李威 2黄志洪 1孙嘉斌 1杨海钢1

作者信息

  • 1. 中国科学院电子学研究所可编程芯片与系统研究室,北京 100190
  • 2. 中国科学院大学,北京 100049
  • 折叠

摘要

Abstract

A semi-supervised Adaptive Boosting(AdaBoost) model tree based modeling approach is proposed for Field Programmable Gate Array(FPGA) performance characterization. The proposed approach, which adopts AdaBoost to improve the prediction accuracy, constructs an analytical performance model with regard to the FPGA architecture parameters in semi-supervised learning way. The FPGA performance model built through the proposed approach estimates the area, delay and area-delay product with Mean Relative Errors(MREs) of 4.42%, 1.62% and 5.06%, respectively. Compared to the supervised model tree and the previous semi-supervised model tree algorithm, the proposed approach boosts the estimation accuracy by 39% and 26% respectively. Experimental results show that the proposed approach is proved to be an efficient FPGA characterization approach, building FPGA performance models with high accuracy in less time cost. The proposed modeling approach can be applied to explore the FPGA architecture design space effectively and efficiently.

关键词

FPGA性能表征/半监督模型树/AdaBoost模型树

Key words

FPGA performance characterization/semi-supervised model tree/AdaBoost model tree

分类

信息技术与安全科学

引用本文复制引用

杨立群,李威,黄志洪,孙嘉斌,杨海钢..一种基于半监督AdaBoost模型树的FPGA性能表征方法[J].太赫兹科学与电子信息学报,2016,14(4):647-652,6.

基金项目

国家自然科学基金资助项目(61271149) (61271149)

太赫兹科学与电子信息学报

OACSTPCD

2095-4980

访问量0
|
下载量0
段落导航相关论文