| 注册
首页|期刊导航|自动化学报|基于总体平均经验模态分解的主动噪声控制系统研究

基于总体平均经验模态分解的主动噪声控制系统研究

罗磊 黄博妍 孙金玮 温良

自动化学报2016,Vol.42Issue(9):1432-1439,8.
自动化学报2016,Vol.42Issue(9):1432-1439,8.DOI:10.16383/j.aas.2016.c150433

基于总体平均经验模态分解的主动噪声控制系统研究

A New ANC System Based on Ensemble Empirical Mode Decomposition

罗磊 1黄博妍 1孙金玮 1温良1

作者信息

  • 1. 哈尔滨工业大学电气工程及自动化学院 哈尔滨 150001
  • 折叠

摘要

Abstract

In order to obtain a better de-noising performance of mixture noise containing both wideband components and nar-rowband components, a new active noise control (ANC) system based on ensemble empirical mode decomposition (EEMD) is proposed in this paper. Real-time EEMD algorithm is used to decompose the mixture noise into several intrinsic mode func-tions (IMF) which have a different frequency range each other, so this decomposition can separate wideband components and nar-rowband components from the mixture noise adaptively. Each component controlled independently can not only process mix-ture noise without “firework”, but also avoid the frequency mismatch occurring in conventional hybrid ANC (HANC) sys-tem. The EEMD algorithm can smooth the mixture noise to make sure the proposed system has better stability when non-stationary phenomenon happens in mixture noise. Compared with HANC system, the proposed ANC system has better sys-tem stability and smaller steady-state error in processing differ-ent noise.

关键词

混合噪声/主动噪声控制/总体平均经验模态分解/固有模态函数/非平稳变化

Key words

Mixture noise/active noise control (ANC)/en-semble empirical mode decomposition (EEMD)/intrinsic mode function/non-stationary change

引用本文复制引用

罗磊,黄博妍,孙金玮,温良..基于总体平均经验模态分解的主动噪声控制系统研究[J].自动化学报,2016,42(9):1432-1439,8.

基金项目

国家自然科学基金(61171183,61471140),2012航天支撑基金(01320214),哈尔滨工业大学科研创新基金(HIT.NSRIF201614)资助Supported by National Natural Science Foundation of China (61171183,61471140),2012 Aerospace Support Fund (01320214), Natural Scientific Research Innovation Foundation in Harbin Insti-tute of Technology (HIT.NSRIF201614) (61171183,61471140)

自动化学报

OA北大核心CSCDCSTPCD

0254-4156

访问量0
|
下载量0
段落导航相关论文