| 注册
首页|期刊导航|东南大学学报(自然科学版)|基于 ARIMA-SVM 模型的快速公交停站时间组合预测方法

基于 ARIMA-SVM 模型的快速公交停站时间组合预测方法

杨敏 丁剑 王炜

东南大学学报(自然科学版)2016,Vol.18Issue(3):651-656,6.
东南大学学报(自然科学版)2016,Vol.18Issue(3):651-656,6.DOI:10.3969/j.issn.1001-0505.2016.03.033

基于 ARIMA-SVM 模型的快速公交停站时间组合预测方法

Hybrid dwell time prediction method for bus rapid transit based on ARIMA-SVM model

杨敏 1丁剑 1王炜1

作者信息

  • 1. 东南大学交通学院,南京 210096 东南大学江苏省城市智能交通重点实验室,南京 210096 东南大学现代城市交通技术协同创新中心,南京 210096
  • 折叠

摘要

Abstract

To explore a reliable dwell time prediction technology through experiments,the physical process of bus rapid transit (BRT)when it stays at the stops is analyzed.Both the longitudinal cor-relation and nonlinear effects from other traffic subsystems are included in this process.Therefore, the dwell time can be divided into the linear and nonlinear parts.Accordingly,autoregressive inte-grated moving average(ARIMA)model and support vector machine (SVM)are adopted to predict these two parts,and the final prediction results are produced by combining the two parts.Thus,the hybrid dwell time prediction method for BRT is established.The dwell time and the relative data gained at two stops in BRT Line 2 in Changzhou are modeled.The results indicate that the hybrid prediction method is effective.Compared with the single ARIMA and SVM models,the hybrid pre-diction method has a sharp decline of the mean absolute error (MAPE)and the mean square error (MSE).Also,the target percent whose prediction error is less than 1 s significantly increases.Fur-thermore,the MAPE,MSE and the target percent can reach 0.62%,4.05 s2 and 96.79%,respec-tively,when training data is enough.

关键词

差分自回归/支持向量机/组合预测方法/快速公交/停站时间

Key words

difference autoregression/support vector machine(SVM)/hybrid prediction method/bus rapid transit/dwell time

分类

交通运输

引用本文复制引用

杨敏,丁剑,王炜..基于 ARIMA-SVM 模型的快速公交停站时间组合预测方法[J].东南大学学报(自然科学版),2016,18(3):651-656,6.

基金项目

国家自然科学基金资助项目(51338003,51378120)、国家重点基础研究发展计划(973计划)资助项目(2012CB725402). ()

东南大学学报(自然科学版)

OA北大核心CSCDCSTPCD

1001-0505

访问量0
|
下载量0
段落导航相关论文