| 注册
首页|期刊导航|计算机工程与应用|基于霍夫森林和半监督学习的图像分类

基于霍夫森林和半监督学习的图像分类

王力冠 冯瑞

计算机工程与应用2016,Vol.52Issue(20):20-25,51,7.
计算机工程与应用2016,Vol.52Issue(20):20-25,51,7.DOI:10.3778/j.issn.1002-8331.1602-0013

基于霍夫森林和半监督学习的图像分类

Image classification based on Hough forest and semi-supervised learning

王力冠 1冯瑞2

作者信息

  • 1. 复旦大学 计算机科学技术学院,上海 201203
  • 2. 上海市智能信息处理重点实验室 复旦大学,上海 201203
  • 折叠

摘要

Abstract

In order to improve the algorithm accuracy, supervised learning algorithms often require a lot of manual anno-tation of samples. Sample labeling process takes a lot of manpower and time. Therefore, how to quickly complete image annotation industry has been a hot research. This paper presents a semi-supervised learning algorithm based on Hough forest, with a relatively small sample of training the classifier, and continues to get new training samples in the classification process, improves the labeling efficiency. The result of algorithm experiments on the dataset of COREL shows that the algorithm can take advantage of a small amount of training samples, satisfactory labeling accuracy.

关键词

监督学习/霍夫森林/半监督学习/直推式支持向量机/图像分类

Key words

supervised learning/Hough forest/semi-supervised learning/Transductive Support Vector Machine(TSVM)/image classification

分类

信息技术与安全科学

引用本文复制引用

王力冠,冯瑞..基于霍夫森林和半监督学习的图像分类[J].计算机工程与应用,2016,52(20):20-25,51,7.

基金项目

国家科技支撑计划(No.2013BAH09F01);上海市科委科技创新行动计划(No.14511106900)。 ()

计算机工程与应用

OA北大核心CSCDCSTPCD

1002-8331

访问量0
|
下载量0
段落导航相关论文