| 注册
首页|期刊导航|计算机与数字工程|基于改进 SVM 主动学习的网络入侵检测磁

基于改进 SVM 主动学习的网络入侵检测磁

苏志同 刘芳正

计算机与数字工程2016,Vol.44Issue(9):1770-1773,4.
计算机与数字工程2016,Vol.44Issue(9):1770-1773,4.DOI:10.3969/j.issn.1672-9722.2016.09.031

基于改进 SVM 主动学习的网络入侵检测磁

An Improved Incremental Bayes Classificaiton Model

苏志同 1刘芳正1

作者信息

  • 1. 北方工业大学计算机学院 北京 100144
  • 折叠

摘要

Abstract

Support vector machine(SVM ) active learning model can solve the problem of small sample learning of intru‐sion detection system ,and improve the performance of the classifier in intrusion detection system .For SVM active learngin model to construct the initial training set is random ,the nuclear spatial clustering of the initial training set construction meth‐od were optimized ,and the introduction of ant colony clustering algorithm reducing sample selection rules on the classification performance effect .The results show that the improved model can effectively improve the intrusion detection system of clas ‐sification performance .

关键词

入侵检测/支持向量机/主动学习/分类性能

Key words

intrusion detection/support vector machine/active learning/classification performance Class Number TP393 .08

分类

信息技术与安全科学

引用本文复制引用

苏志同,刘芳正..基于改进 SVM 主动学习的网络入侵检测磁[J].计算机与数字工程,2016,44(9):1770-1773,4.

计算机与数字工程

OACSTPCD

1672-9722

访问量0
|
下载量0
段落导航相关论文