| 注册
首页|期刊导航|电测与仪表|基于 GA 优化 T-S 模糊神经网络的小电流接地故障选线新方法

基于 GA 优化 T-S 模糊神经网络的小电流接地故障选线新方法

王磊 曹现峰 骆玮

电测与仪表2016,Vol.53Issue(17):6-11,6.
电测与仪表2016,Vol.53Issue(17):6-11,6.

基于 GA 优化 T-S 模糊神经网络的小电流接地故障选线新方法

New method of fault line selection for small current grounding based on GA tooptimize T-S fuzzy neural network

王磊 1曹现峰 2骆玮1

作者信息

  • 1. 合肥工业大学电气与自动化工程学院,合肥230009
  • 2. 安徽省新能源利用与节能重点实验室,合肥230009
  • 折叠

摘要

Abstract

In the small current grounding system , the single-phase grounding fault happens frequently .How to quick-ly and accurately find the fault line has been a key research topic , and this doesn ’ t get effective solution .This paper presents a new method offault line selectionforpower distribution network based on genetic algorithm ( GA) to optimize T-S fuzzy neural network .By adjustingthe fitness function of traditionalGA , initial parameters andweights are opti-mized firstly , and the gradient descent method is used to optimize the second time .The influence of T-S fuzzy neural network , the traditional GA optimization of T-S fuzzy neural network and differentnetwork structures to network perfor-manceare discussed .The results of the studyillustrate the new GA to optimize T-S fuzzy neural network is better than T-S fuzzy neural network and traditional GA to optimize T -S fuzzy neural network in the term of line selection effect , which can accurately , effectively , andreliably select the fault line .

关键词

小电流接地系统/单相接地/选线/GA/T-S模糊神经网络

Key words

smallcurrent grounding system/single-phase grounding/line selection/GA/T-S fuzzy neural network

分类

信息技术与安全科学

引用本文复制引用

王磊,曹现峰,骆玮..基于 GA 优化 T-S 模糊神经网络的小电流接地故障选线新方法[J].电测与仪表,2016,53(17):6-11,6.

基金项目

国家自然科学基金资助项目(51177036);安徽省自然科学基金资助项目 ()

电测与仪表

OA北大核心

1001-1390

访问量0
|
下载量0
段落导航相关论文