| 注册
首页|期刊导航|工程地质学报|WA联合ELM与OS-ELM的滑坡位移预测模型

WA联合ELM与OS-ELM的滑坡位移预测模型

李骅锦 许强 何雨森 魏勇

工程地质学报2016,Vol.24Issue(5):721-731,11.
工程地质学报2016,Vol.24Issue(5):721-731,11.DOI:10.13544/j.cnki.jeg.2016.05.001

WA联合ELM与OS-ELM的滑坡位移预测模型

PREDICTIVE MODELING OF LANDSLIDE DISPLACEMENT BY WAVELET ANALYSIS AND MULTIPLE EXTREME LEARNING MACHINES

李骅锦 1许强 1何雨森 2魏勇1

作者信息

  • 1. 地质灾害防治与地质环境保护国家重点实验室 成都理工大学 成都 610059
  • 2. 爱荷华大学智能系统研究实验室,美国爱荷华州爱荷华城 52242
  • 折叠

摘要

Abstract

The curve landslide cumulative displacement is usually nonlinear.Hence,it is challenging to build predictive models with less error.In this paper,we propose a new methodology of embedding wavelet analysis with basic extreme learning machine(ELM)and online sequential extreme learning machine(OS-ELM)to predict the cumulative displacement.Firstly,by wavelet transformation,the cumulative function of displacement is discretized into periodic displacement and trend displacement.Secondly,basic ELM and OS-ELM are selected to predict the periodic displacement and trend displacement.Lastly,the cumulative displacement function is computed by ensembling the predicted periodic and trend displacement values.For basic ELM,a sigmoid function is selected as the kernel function and a single hidden layer with 33 nodes performs best.For OS-ELM,the prediction error reaches its minimum with 1 00 hidden nodes when the RBF function is selected as the kernel function.RMSE for ELM is 0.1 423 and for OS-ELMis 0.1 31 5.This methodology with high predictive accuracy performs better in comparison with other methods.

关键词

滑坡累积位移/非线性特性/位移预测/小波函数/ELM/OS-ELM

Key words

Landslide cumulative displacement/Nonlinear curve/Displacement prediction/Wavelet analysis/ELM/OS-ELM

分类

天文与地球科学

引用本文复制引用

李骅锦,许强,何雨森,魏勇..WA联合ELM与OS-ELM的滑坡位移预测模型[J].工程地质学报,2016,24(5):721-731,11.

基金项目

国家重点基础研究发展计划(973)项目(2013CB733200),国家创新研究群体科学基金(41521002)资助. ()

工程地质学报

OA北大核心CSCDCSTPCD

1004-9665

访问量1
|
下载量0
段落导航相关论文