| 注册
首页|期刊导航|计算机工程与应用|基于快速视网膜关键点算法改进的图像匹配方法

基于快速视网膜关键点算法改进的图像匹配方法

付偲 邓丽 卢根 费敏锐

计算机工程与应用2016,Vol.52Issue(19):208-212,5.
计算机工程与应用2016,Vol.52Issue(19):208-212,5.DOI:10.3778/j.issn.1002-8331.1412-0291

基于快速视网膜关键点算法改进的图像匹配方法

Improved image matching based on fast retina keypoint algorithm

付偲 1邓丽 2卢根 1费敏锐2

作者信息

  • 1. 上海大学 机电工程与自动化学院,上海 200072
  • 2. 上海市电站自动化技术重点实验室,上海 200072
  • 折叠

摘要

Abstract

Conventional Affine Scale Invariant Features(ASIFT)algorithm implements full affine invariance by simulating image with affine transformation. To solve the problem of time-consuming implements caused by low efficiency of SIFT algorithm and implement more efficient image matching, Fast Retina Keypoint(FREAK)is introduced to the affine model of ASIFT with improvements based on Lanczos-4 interpolation. With the implementation of Brute Force feature matching based on HAMMING distance and improvement of matching points pairs filtration combined with Random Sample Con-sensus(RANSAC), the new algorithm AFREAK is obtained, which implements full affine invariance with low consuming and memory usage. Experimental results show that the speed of proposed algorithm is almost 2 to 3 times faster than the original ASIFT algorithm with the similar matching effect.

关键词

尺度不变特征(SIFT)/仿射尺度不变特征(ASIFT)/快速视网膜关键点算法(FREAK)/仿射不变/图像匹配

Key words

Scale Invariant Features(SIFT)/Affine Scale Invariant Features(ASIFT)/Fast Retina Keypoint(FREAK)/affine invariance/image matching

分类

信息技术与安全科学

引用本文复制引用

付偲,邓丽,卢根,费敏锐..基于快速视网膜关键点算法改进的图像匹配方法[J].计算机工程与应用,2016,52(19):208-212,5.

基金项目

上海市科委专项项目(No.14DZ1206302);上海高校教师产学研践习计划;上海大学创新基金(No.K100109005)。 ()

计算机工程与应用

OA北大核心CSCDCSTPCD

1002-8331

访问量0
|
下载量0
段落导航相关论文