| 注册
首页|期刊导航|计算机应用研究|基于量化误差与分形理论的高计算效率无监督聚类研究

基于量化误差与分形理论的高计算效率无监督聚类研究

胡国生 杨海涛

计算机应用研究2016,Vol.33Issue(10):2919-2922,4.
计算机应用研究2016,Vol.33Issue(10):2919-2922,4.DOI:10.3969/j.issn.1001-3695.2016.10.009

基于量化误差与分形理论的高计算效率无监督聚类研究

Quantization error and fractal theory based high computation efficiency unsupervised clustering algorithm

胡国生 1杨海涛2

作者信息

  • 1. 广东食品药品职业学院 软件学院,广州510520
  • 2. 浙江大学 数学学院,杭州310027
  • 折叠

摘要

Abstract

The existing vector clustering algorithm need to learn a lot of complex data in order to get a good performance for clustering,and it does not have good performance for big data.This paper proposed a quantization error and fractal theory based high computation efficiency unsupervised clustering algorithm to solve that problem.Firstly,it constructed a parametric model-ing of the quantization error for data set,got the rate-distortion curve based on the space structure of the data set.Then,it com-puted the efficient dimensionality of the data set by estimation of the rate distortion curve.Lastly,it obtained the optimal cluste-ring number of the target data set by fractal theory.Experiments result shows that the proposed quantization error modeling can estimate the quantization error very well and the proposed algorithm has better performance in search the best clustering number and computation efficiency than the existing vector clustering algorithm.

关键词

分形理论/量化误差/率失真曲线/无监督聚类/多维数据

Key words

fractal theory/quantization error/rate distortion curve/unsupervised clustering/multidimensional data

分类

信息技术与安全科学

引用本文复制引用

胡国生,杨海涛..基于量化误差与分形理论的高计算效率无监督聚类研究[J].计算机应用研究,2016,33(10):2919-2922,4.

基金项目

浙江省自然科学基金资助项目(Y1090416);浙江省自然科学基金资助项目 ()

计算机应用研究

OA北大核心CSCDCSTPCD

1001-3695

访问量0
|
下载量0
段落导航相关论文