| 注册
首页|期刊导航|物理学报|基于累积量标准差的超分辨光学涨落成像解卷积优化∗

基于累积量标准差的超分辨光学涨落成像解卷积优化∗

王雪花 陈丹妮 于斌 牛憨笨

物理学报2016,Vol.65Issue(19):198701-1-198701-7,7.
物理学报2016,Vol.65Issue(19):198701-1-198701-7,7.DOI:10.7498/aps.65.198701

基于累积量标准差的超分辨光学涨落成像解卷积优化∗

Deconvolution optimization in sup er-resolution optical fluctuation imaging based on cumulant standard deviation

王雪花 1陈丹妮 1于斌 1牛憨笨1

作者信息

  • 1. 深圳大学光电工程学院,光电子器件与系统 教育部/广东省 重点实验室,深圳生物医学工程重点实验室,深圳 518060
  • 折叠

摘要

Abstract

The super-resolution optical fluctuation imaging (SOFI) technique enhances image spatial resolution by evaluating the independent stochastic intensity fluctuations of emitters. In principle, it eliminates any noise uncorrelated temporally, and provides unlimited spatial resolution since the calculation of the nth-order cumulant followed by a deconvolution results in an image with n-fold resolution improvement in three dimensions. But in practice, due to limited data length, the statistical uncertainty of cumulants will affect the continuity and homogeneity of SOFI image, which results in the fact that the high order SOFI (typically over 3rd order) cannot improve spatial resolution significantly. Since the variance characterizes the statistical uncertainty of cumulant, we deduce its theoretical expression based on a single dataset. In traditional SOFI techniques, due to lack of statistical analysis of cumulant, there is no noise constraint condition of cumulant in the Lucy-Richardson deconvolution to prevent the algorithm from causing noise amplification. In this paper, based on the cumulant variance formula, we calculate the cumulant standard deviation in each pixel of SOFI image and introduce the results into the Lucy-Richardson algorithm as a DAMPAR to suppress the noise generation in such pixels. The simulation and experimental results show that under the same data length, the deconvolution optimization based on cumulant standard deviation significantly improves the uniformity and continuity of SOFI image. On the other hand, under the premise of identical image quality, this optimization technique can also greatly shorten the image frames to less than half the original, thus promoting the development of super-resolution imaging of living cells.

关键词

超分辨显微/累积量/解卷积

Key words

super-resolution microscopy/cumulant/deconvolution

引用本文复制引用

王雪花,陈丹妮,于斌,牛憨笨..基于累积量标准差的超分辨光学涨落成像解卷积优化∗[J].物理学报,2016,65(19):198701-1-198701-7,7.

基金项目

国家重点基础研究发展计划(批准号:2012CB825802)、国家自然科学基金(批准号:61335001,61178080,61235012,11004136)、国家重大科学仪器设备开发专项(批准号:2012YQ15009203)和深圳市科技计划项目(批准号:JCYJ20120613173049560, GJHS20120621155433884)资助的课题 (批准号:2012CB825802)

物理学报

OA北大核心CSCDCSTPCD

1000-3290

访问量0
|
下载量0
段落导航相关论文