| 注册
首页|期刊导航|中国机械工程|基于改进BP神经网络的机床基础部件可再制造性评价模型

基于改进BP神经网络的机床基础部件可再制造性评价模型

潘尚峰 卢超 彭一波

中国机械工程2016,Vol.27Issue(20):2743-2748,6.
中国机械工程2016,Vol.27Issue(20):2743-2748,6.DOI:10.3969/j.issn.1004-132X.2016.20.009

基于改进BP神经网络的机床基础部件可再制造性评价模型

Evaluation Model for Machine Tool Basic Parts Remanufacturability Based on Optimized BP Neural Network

潘尚峰 1卢超 1彭一波2

作者信息

  • 1. 清华大学,北京,100084
  • 2. 中国舰船研究设计中心,武汉,430064
  • 折叠

摘要

Abstract

To utilize sample data to accomplish the remanufacturability evaluation of the machine tool basic parts,and to improve the prediction accuracy of remanufacturability evaluation of the ma-chine tool basic parts,a BP neural network remanufacturability evaluation model optimized by the simulated annealing algorithm and genetic algorithm was proposed.A BP neural network remanufac-turability evaluation prediction model of the machine tool basic parts was built according to the evalua-tion results of typical remanufacturability evaluation model.The BP neural network evaluation model optimized by the simulated annealing algorithm and genetic algorithm has better initial weights and thresholds to increase the convergence rate and avoid the local convergence.Remanufacturability eval-uation of a machine tool basic parts was taken as an example to demonstrate that the remanufactur-ability evaluation model optimized by simulated annealing algorithm and genetic algorithm has higher prediction accuracy.

关键词

可再制造性/综合评价/BP神经网络/模拟退火遗传算法

Key words

remanufacturability/comprehensive evaluation/BP neural network/simulated annea-ling genetic algorithm

分类

信息技术与安全科学

引用本文复制引用

潘尚峰,卢超,彭一波..基于改进BP神经网络的机床基础部件可再制造性评价模型[J].中国机械工程,2016,27(20):2743-2748,6.

基金项目

国家科技重大专项(2014ZX04014-011) (2014ZX04014-011)

中国机械工程

OA北大核心CSCDCSTPCD

1004-132X

访问量0
|
下载量0
段落导航相关论文