| 注册
首页|期刊导航|中山大学学报(自然科学版)|核主成分分析网络的人脸识别方法

核主成分分析网络的人脸识别方法

胡伟鹏 胡海峰 顾建权 李昊曦

中山大学学报(自然科学版)2016,Vol.55Issue(5):48-51,56,5.
中山大学学报(自然科学版)2016,Vol.55Issue(5):48-51,56,5.DOI:10.13471/j.cnki.acta.snus.2016.05.009

核主成分分析网络的人脸识别方法

Kernel principal component analysis network method for face recognition

胡伟鹏 1胡海峰 1顾建权 1李昊曦1

作者信息

  • 1. 中山大学电子与信息工程学院,广东 广州 510006
  • 折叠

摘要

Abstract

Principal component analysis network (PCANet)is a popular deep learning classification method,which has caused wide attention in the area of computer vision due to its practical applications in face recognition,hand-written digit recognition,texture classification,and object recognitions.On the basis of PCANet.The kernel principal component analysis network (KPCANet)method is proposed for face recognition.The model is constructed by four processing components,including principal component analysis (PCA),kernel principal component analysis (KPCA),binary hashing,and block-wise histo-grams.The performance of the proposed method is evaluated using two public face datasets,i.e.,Ex-tended Yale B database and AR face database.The results show that KPCANet outperforms PCANet method.Especially when the face images have large variations about illuminations and expressions,KP-CANet gives better recognition results.

关键词

核主成分分析网络/深度学习/人脸识别/核变换

Key words

kernel principal component analysis network/deep learning/face recognition/kernel trans-formation

分类

计算机与自动化

引用本文复制引用

胡伟鹏,胡海峰,顾建权,李昊曦..核主成分分析网络的人脸识别方法[J].中山大学学报(自然科学版),2016,55(5):48-51,56,5.

基金项目

国家自然科学基金资助项目(60802069,61273270);广东省自然科学基金资助项目 ()

中山大学学报(自然科学版)

OA北大核心CSCDCSTPCD

0529-6579

访问量3
|
下载量0
段落导航相关论文