| 注册
首页|期刊导航|铁道科学与工程学报|气压模拟系统大数据迭代学习控制算法研究

气压模拟系统大数据迭代学习控制算法研究

屈国庆 陈春俊 闫中奎

铁道科学与工程学报2016,Vol.13Issue(10):1886-1890,5.
铁道科学与工程学报2016,Vol.13Issue(10):1886-1890,5.

气压模拟系统大数据迭代学习控制算法研究

Research of big data iterative learning control algorithm for air pressure simulation system

屈国庆 1陈春俊 1闫中奎1

作者信息

  • 1. 西南交通大学 机械工程学院,四川 成都610031
  • 折叠

摘要

Abstract

In order to research the relationship between the high-speed train inner space air pressure fluctuation and passenger comfort, an air pressure simulation system which could simulate the air pressure fluctuation of high-speed train inner space repetitively was designed. The simulation model of air pressure simulation system was established by using the co-simulation technology of Simulink and AMESim. For the Multi-Volume Coupled characteristics of the air pressure simulation system, a kind of iterative learning control ( ILC) algorithm based on big data was proposed. The algorithm uses the history operation data of the system to calculate the given initial value of ILC algorithm control output firstly, and dynamic iteractive learning is then started on this basis. The simulation results show that the proposed algorithm can improve convergence speed and dynamic performance of the system significantly.

关键词

高速列车/气压模拟/迭代学习控制/大数据/收敛速度

Key words

high-speed train/air pressure simulation/iterative learning control/big data/convergence speed

分类

信息技术与安全科学

引用本文复制引用

屈国庆,陈春俊,闫中奎..气压模拟系统大数据迭代学习控制算法研究[J].铁道科学与工程学报,2016,13(10):1886-1890,5.

基金项目

国家自然科学基金资助项目(51475387) (51475387)

铁道科学与工程学报

OA北大核心CSCDCSTPCD

1672-7029

访问量0
|
下载量0
段落导航相关论文