| 注册
首页|期刊导航|西安电子科技大学学报(自然科学版)|广义生成函数张量分解的欠定混合盲辨识

广义生成函数张量分解的欠定混合盲辨识

周志文 黄高明 高俊

西安电子科技大学学报(自然科学版)2016,Vol.43Issue(5):116-120,5.
西安电子科技大学学报(自然科学版)2016,Vol.43Issue(5):116-120,5.DOI:10.3969/j.issn.1001-2400.2016.05.021

广义生成函数张量分解的欠定混合盲辨识

Tensor decomposition of generalized generating function-based blind identification of underdetermined mixtures

周志文 1黄高明 1高俊1

作者信息

  • 1. 海军工程大学电子工程学院,湖北武汉 430033
  • 折叠

摘要

Abstract

Aimed at the problem of underdetermined blind identification , an algorithm based on generalized generating function decomposition is proposed , which no longer imposes sparsity restrictions on source signals . First , the second derivative matrices of the generalized generating function are stacked to the third‐order tensor form , from which the number of source signals can be blindly estimated . Then the tensor is decomposed with singular value decomposition , and the mixture matrix is estimated by the joint diagonalization method . Simulation results validate the effectiveness of the proposed algorithm , and show that the proposed algorithm can acquire a better estimation precision than other classical algorithms with the same SNRs in the conditions of well‐posed and underdetermined mixtures , meanwhile it extends the field of blind source separation application via the generalized generating function restricted only to the well‐posed case .

关键词

欠定盲辨识/广义生成函数/张量分解/联合对角化/稀疏分量分析

Key words

underdetermined blind identification/general generating function/tensor decomposition/joint diagonalization/sparse component analysis

分类

信息技术与安全科学

引用本文复制引用

周志文,黄高明,高俊..广义生成函数张量分解的欠定混合盲辨识[J].西安电子科技大学学报(自然科学版),2016,43(5):116-120,5.

基金项目

国家“863”高技术研究发展计划资助项目 ()

西安电子科技大学学报(自然科学版)

OA北大核心CSCDCSTPCD

1001-2400

访问量0
|
下载量0
段落导航相关论文