| 注册
首页|期刊导航|燕山大学学报|基于BP神经网络的驾驶员状态识别及行为分析

基于BP神经网络的驾驶员状态识别及行为分析

盛译萱

燕山大学学报2016,Vol.40Issue(4):366-371,6.
燕山大学学报2016,Vol.40Issue(4):366-371,6.DOI:10.3969/j.issn.1007-791X.2016.04.012

基于BP神经网络的驾驶员状态识别及行为分析

Drivers' state recognition and behavior analysis based on BP neural network algorithm

盛译萱1

作者信息

  • 1. 亚利桑那州立大学 航空与机械工程学院,美国 坦佩85281
  • 折叠

摘要

Abstract

Driver-in-loop Simulation Platform is used to simulate actual road condition and carry on the simulation driving experi-ment. Driver's behavior data is collected in real time and transmits to computer to analyze. The basic idea is to use BP neural net-work algorithm which could classify the data from platform into different driving states and Discrete Fourier transform( DFT) method which could analyze driver's behavior through of steering angle and accelerator pedal to verify the amplitude-frequency characteristic of different driving behavior is related to driver's operation ability and safety of vehicle.

关键词

BP神经网络/驾驶状态识别/行为分析

Key words

BP neural network/driving state recognition/behavior analysis

分类

信息技术与安全科学

引用本文复制引用

盛译萱..基于BP神经网络的驾驶员状态识别及行为分析[J].燕山大学学报,2016,40(4):366-371,6.

燕山大学学报

OA北大核心CSTPCD

1007-791X

访问量0
|
下载量0
段落导航相关论文