纺织高校基础科学学报2016,Vol.29Issue(3):312-318,7.DOI:10.13338/j.issn.1006-8341.2016.03.007
一类具有B-D非线性传染率的传染病模型的全局稳定性分析
Global dynamics of the SIQ epidemic model with the B-D nonlinear incidence rate
摘要
Abstract
The global stability of the SIQ epidemics model with the B-D nonlinear incidence rate is researched.The threshold value R have been obtained and it shows that there is only a dis-easefree equilibrium point when R<1 ,and there is also an endemic equilibrium point if R>1 . With the help of Lyapunov function,some results about the global stability of disease free and endemic equilibrium points have been established,which are applicable for non-monotone,non-concave incidence rate.关键词
非线性传染率/阈值/平衡点/全局稳定性Key words
nonlinear incidence rate/threshold value/equilibrium point/globally stable分类
数理科学引用本文复制引用
马方强,冯孝周,马晓丽..一类具有B-D非线性传染率的传染病模型的全局稳定性分析[J].纺织高校基础科学学报,2016,29(3):312-318,7.基金项目
陕西省自然科学基金资助项目(2013JC2-31) (2013JC2-31)
西安工业大学校长基金资助项目(XAGDJJ14023,1323) (XAGDJJ14023,1323)
西安工业大学大学生创新创业训练计划项目(201410702008) (201410702008)