| 注册
首页|期刊导航|计算机工程与应用|面向CPU-GPU源到源编译系统的渐近拟合优化方法

面向CPU-GPU源到源编译系统的渐近拟合优化方法

魏洪昌 朱正东 董小社 宁洁

计算机工程与应用2016,Vol.52Issue(21):30-35,6.
计算机工程与应用2016,Vol.52Issue(21):30-35,6.DOI:10.3778/j.issn.1002-8331.1603-0434

面向CPU-GPU源到源编译系统的渐近拟合优化方法

Asymptotic fitting optimization technology for source-to-source compile system on CPU-GPU architecture

魏洪昌 1朱正东 1董小社 1宁洁1

作者信息

  • 1. 西安交通大学 电子与信息工程学院,西安 710049
  • 折叠

摘要

Abstract

Aiming at addressing the problem of the inadequate performance optimization after developing and porting of application on CPU-GPU heterogeneous parallel system, a new approach for CPU-GPU system is proposed, which com-bines asymptotic fitting optimization with source-to-source compiling technique. This approach can translate C code that inserts directives into CUDA code, and profile the generated code several times. Besides, the approach can realize the source-to-source compiling and optimization of the generated code automatically, and a prototype system based on the approach is realized in this paper as well. Functionality and performance evaluations of the prototype show that the gener-ated CUDA code is functionally equivalent to the original C code while its improvement in performance is significant. When compared with CUDA benchmark, the performance of the generated CUDA code is obviously better than codes generated by other source-to-source compiling technique.

关键词

源到源编译/统一计算架构(CUDA)/剖分/渐近拟合优化

Key words

source-to-source compile/Compute Unified Device Architecture(CUDA)/profiling/asymptotic fitting optimization

分类

信息技术与安全科学

引用本文复制引用

魏洪昌,朱正东,董小社,宁洁..面向CPU-GPU源到源编译系统的渐近拟合优化方法[J].计算机工程与应用,2016,52(21):30-35,6.

基金项目

国家自然科学基金(No.61572394);国家高技术研究发展计划(863)(No.2014AA01A302)。 ()

计算机工程与应用

OA北大核心CSCDCSTPCD

1002-8331

访问量3
|
下载量0
段落导航相关论文