| 注册
首页|期刊导航|高技术通讯|面向海量NetFlow数据的存储和查询处理方法研究

面向海量NetFlow数据的存储和查询处理方法研究

陈重韬 王伟平 孟丹 崔甲 胡斌

高技术通讯2016,Vol.26Issue(6):534-541,8.
高技术通讯2016,Vol.26Issue(6):534-541,8.DOI:10.3772/j.issn.1002-0470.2016.06.003

面向海量NetFlow数据的存储和查询处理方法研究

Research on storage and query processing for massive NetFlow data

陈重韬 1王伟平 2孟丹 3崔甲 3胡斌3

作者信息

  • 1. 中国科学院计算技术研究所计算机应用研究中心 北京100190
  • 2. 中国科学院大学 北京100049
  • 3. 中国科学院信息工程研究所 北京100093
  • 折叠

摘要

Abstract

Considering that China backbone network' s NetFlow data has the features of high arrival rate, large amount and need of frequent multidimensional query operation, the study proposed a multidimensional attributes clustering storage ( MACS) model.According to the properties of real applicable queries, the proposed MACS model conducts space partition on NetFlow data, and stores the data in the way of parallel pipelining.Moreover, a hyper-polyhed-ron query mode for NetFlow data was presented.The experiments performed in real application environments show that the real time data storing rate of a single system realized with the model can achieve the storing rate up to 2.7 million records per second, which is more faster than all the other systems.Especially, the speed of the proposed multidimensional query is faster than Hive and Impala.

关键词

NetFlow,多维属性聚簇存储(/MACS)模型,实时数据存储,超多面体

Key words

NetFlow/multidimensional attributes clustering storage ( MACS) model/real time data storage/super polyhedron

引用本文复制引用

陈重韬,王伟平,孟丹,崔甲,胡斌..面向海量NetFlow数据的存储和查询处理方法研究[J].高技术通讯,2016,26(6):534-541,8.

基金项目

国家科技支撑计划(2012BAH46B03),国家自然科学基金(61402473),核高基(2013ZX01039-002-001-001)和中国科学院先导专项(XDA06030200)资助项目. (2012BAH46B03)

高技术通讯

OA北大核心CSTPCD

1002-0470

访问量0
|
下载量0
段落导航相关论文