| 注册
首页|期刊导航|计算机工程与应用|基于图的流行排序的显著目标检测改进算法

基于图的流行排序的显著目标检测改进算法

张晴 林家骏 戴蒙

计算机工程与应用2016,Vol.52Issue(22):26-32,38,8.
计算机工程与应用2016,Vol.52Issue(22):26-32,38,8.DOI:10.3778/j.issn.1002-8331.1605-0010

基于图的流行排序的显著目标检测改进算法

Improved salient object detection based upon graph-based manifold ranking

张晴 1林家骏 2戴蒙1

作者信息

  • 1. 上海应用技术大学 计算机科学与信息工程学院,上海 201418
  • 2. 华东理工大学 自动化研究所,上海 200237
  • 折叠

摘要

Abstract

Existing salient object detection algorithm based graph-based manifold ranking is less effective in detecting images with complex background due to its idealistic prior background assumption. This paper proposes an improved algorithm based upon affinity propagation clustering and graph-based manifold ranking. First, the background superpixels on the boundary is extracted according to their color contrast. And then the affinity propagation clustering algorithm is utilized to adaptively obtain the color clusters which are used to compute the saliency of object and background as queries in the manifold ranking. Finally, the salient map is determined by integrating multiscale saliency. This proposed algorithm is compared with nine state-of-the-art methods in terms of precision, recall, F-measure, PR curves, AUC values and visual effect on four popular and public datasets of ASD, ECSSD, DUTOMRON and SED2, and the experimental results show the improvements over the state-of-the-art methods.

关键词

显著目标检测/显著性/背景先验/流行排序/仿射传播聚类

Key words

salient object detection/saliency/background prior/manifold ranking/affinity propagation clustering

分类

信息技术与安全科学

引用本文复制引用

张晴,林家骏,戴蒙..基于图的流行排序的显著目标检测改进算法[J].计算机工程与应用,2016,52(22):26-32,38,8.

基金项目

国家自然科学基金(No.61401281);上海市自然科学基金(No.14ZR1440700)。 ()

计算机工程与应用

OA北大核心CSCDCSTPCD

1002-8331

访问量0
|
下载量0
段落导航相关论文