| 注册
首页|期刊导航|计算机工程与应用|求解旅行商问题的改进型量子蚁群算法

求解旅行商问题的改进型量子蚁群算法

万正宜 彭玉旭

计算机工程与应用2016,Vol.52Issue(22):59-63,122,6.
计算机工程与应用2016,Vol.52Issue(22):59-63,122,6.DOI:10.3778/j.issn.1002-8331.1412-0380

求解旅行商问题的改进型量子蚁群算法

Improved quantum ant colony algorithm for Traveling Salesman Problem

万正宜 1彭玉旭1

作者信息

  • 1. 长沙理工大学 计算机与通信工程学院,长沙 410114
  • 折叠

摘要

Abstract

Against the disadvantages of being easy to fall into local optimum and slow convergence speed on solving Traveling Salesman Problem(TSP)with traditional quantum ant colony algorithm(QACA), this paper proposes an Improved Quantum Ant Colony Algorithm(IQACA)on solving Traveling Salesman Problem. This algorithm designs a new strategy which is used to update pheromone volatilization factor adaptively, and it can update the pheromone dynamically. Further-more a new quantum revolving door is adopted to change the convergence tend of quantum probability amplitude. Three basic function extremum optimization simulation compared with traditional quantum ant colony algorithm, proves that the paper’s algorithm has better performance. Experimental results based on TSP library(TSPLIB)show that both convergence rate and optimized global results are much improved compared with other algorithms, and it can avoid falling into local optimum effectively.

关键词

TSP/量子蚁群算法/改进型量子蚁群算法/量子旋转门

Key words

Traveling Salesman Problem(TSP)/Quantum Ant Colony Algorithm(QACA)/Improved Quantum Ant Colony Algorithm(IQACA)/quantum revolving door

分类

信息技术与安全科学

引用本文复制引用

万正宜,彭玉旭..求解旅行商问题的改进型量子蚁群算法[J].计算机工程与应用,2016,52(22):59-63,122,6.

基金项目

湖南省自然科学基金(No.14JJ7043)。 ()

计算机工程与应用

OA北大核心CSCDCSTPCD

1002-8331

访问量0
|
下载量0
段落导航相关论文