| 注册
首页|期刊导航|计算机工程与应用|基于数据驱动缺失特征检测与重建的声纹识别

基于数据驱动缺失特征检测与重建的声纹识别

尹海明 王金明 李欢欢

计算机工程与应用2016,Vol.52Issue(22):159-163,5.
计算机工程与应用2016,Vol.52Issue(22):159-163,5.DOI:10.3778/j.issn.1002-8331.1501-0091

基于数据驱动缺失特征检测与重建的声纹识别

Voice print recognition based on data training missing feature detec-tion and reconstruction

尹海明 1王金明 1李欢欢1

作者信息

  • 1. 解放军理工大学 通信工程学院,南京 210007
  • 折叠

摘要

Abstract

Pointing at improving the noise robustness of speaker recognition systems, a front-end processing method for voiceprint recognition based on data training missing feature detection and reconstruction is proposed. Taking full advantage of the a priori information obtained from massive training data, this method can accurately calculate subband SNR, detect, mark and reconstruct the subband feature parameters which are serious polluted by various noise, in this way, noise robust feature parameter is obtained. Experiments show that in low SNR environment, data training method has achieved a high recognition rate, and system performance also improved in none stationary environment.

关键词

声纹识别/数据驱动/缺失特征重建/噪声鲁棒性/子带信噪比

Key words

voice print recognition/data training/missing feature reconstruction/noise robustness/sub-band SNR

分类

信息技术与安全科学

引用本文复制引用

尹海明,王金明,李欢欢..基于数据驱动缺失特征检测与重建的声纹识别[J].计算机工程与应用,2016,52(22):159-163,5.

基金项目

中兴通讯产学研合作研究项目资助(No.CON1307160001)。 ()

计算机工程与应用

OA北大核心CSCDCSTPCD

1002-8331

访问量0
|
下载量0
段落导航相关论文