| 注册
首页|期刊导航|计算机应用研究|基于信任和概率矩阵分解的协同推荐算法研究

基于信任和概率矩阵分解的协同推荐算法研究

郑修猛 陈福才 柯丽虹

计算机应用研究2016,Vol.33Issue(11):3240-3244,5.
计算机应用研究2016,Vol.33Issue(11):3240-3244,5.DOI:10.3969/j.issn.1001--3695.2016.11.010

基于信任和概率矩阵分解的协同推荐算法研究

Research on collaborative filtering recommendation algorithm based on trust and probabilistic matrix factorization

郑修猛 1陈福才 1柯丽虹2

作者信息

  • 1. 国家数字交换系统工程技术研究中心,郑州450002
  • 2. 中国人民解放军75576部队,海口570100
  • 折叠

摘要

Abstract

To overcome the problem of cold-start and data sparsity in collaborative filtering recommender systems,the resear-chers utilized the trust relationship between users to propose a variety of trust-based recommender algorithms.Though they im-proved the recommender coverage,the recommender precision came down.So this paper took the users’influence and the latent factors into account,proposed a trust-based and probabilistic matrix factorization for collaborative filtering recommendation algo-rithm.First,the algorithm integrated the knowledge of the users’trust,similitude specialty,and so on,calculated asymmetrical trust value between users.Then it fused the probabilistic matrix factorization method to predict the ratings.Finally,it experi-mented on the real dataset.And the result shows that this algorithm can effectly improve accuracy of rating prediction.

关键词

推荐系统/协同过滤/信任/数据稀疏/冷启动/矩阵分解

Key words

recommender systems/collaborative filtering/trust/data sparsity/cold-start/matrix factorization

分类

信息技术与安全科学

引用本文复制引用

郑修猛,陈福才,柯丽虹..基于信任和概率矩阵分解的协同推荐算法研究[J].计算机应用研究,2016,33(11):3240-3244,5.

基金项目

国家自然科学基金资助项目(61171108);国家“973”计划资助项目(2012CB315901,2012CB315905);国家科技支撑计划资助项目 ()

计算机应用研究

OA北大核心CSCDCSTPCD

1001-3695

访问量5
|
下载量0
段落导航相关论文