| 注册
首页|期刊导航|计算机应用研究|基于角度方差的多层次高维数据异常检测算法

基于角度方差的多层次高维数据异常检测算法

陈圣楠 钱红燕 李伟

计算机应用研究2016,Vol.33Issue(11):3383-3386,4.
计算机应用研究2016,Vol.33Issue(11):3383-3386,4.DOI:10.3969/j.issn.1001--3695.2016.11.040

基于角度方差的多层次高维数据异常检测算法

Hybrid outlier detection algorithm based on angle variance for high-dimensional data

陈圣楠 1钱红燕 1李伟2

作者信息

  • 1. 南京航空航天大学计算机科学与技术学院,南京210016
  • 2. 中国民航大学中国民航信息技术科研基地,天津300300
  • 折叠

摘要

Abstract

Outlier detection is a major task of data mining.Outlier detection methods based on Euclidean distances are not ca-pable for high-dimensional data because they can hardly ensure the cost of the computation and the accuracy.After analyzing angle-based outlier detection method,this paper proposed a novel approach called hybrid outlier detection algorithm based on angle variance for high-dimensional data.The algorithm first utilized rough set theory to analyze the impact between the attri-butes and abandoned less important ones.Then it divided data into different cubes according to the distribution of data on every attribute.It only focused on the cubes with high possibility to contain outliers.At last,through the calculation of angle-based outlier factor,it was able to detect outliers.Compared to conventional algorithms,such as ABOD,FastVOA and LOF, the experimental results verify the feasibility of the proposed approach in terms of both efficiency and accuracy.

关键词

高维数据/异常检测/降维/网格/角度方差

Key words

high-dimensional data/outlier detection/dimensional reduction/grid/angle variance

分类

信息技术与安全科学

引用本文复制引用

陈圣楠,钱红燕,李伟..基于角度方差的多层次高维数据异常检测算法[J].计算机应用研究,2016,33(11):3383-3386,4.

基金项目

中国民航大学中国民航信息技术科研基地资质项目 ()

计算机应用研究

OA北大核心CSCDCSTPCD

1001-3695

访问量0
|
下载量0
段落导航相关论文