| 注册
首页|期刊导航|湖南大学学报(自然科学版)|一种分析全基因组上位性的新方法∗

一种分析全基因组上位性的新方法∗

李泽军 陈敏 曾利军

湖南大学学报(自然科学版)2016,Vol.43Issue(10):155-160,6.
湖南大学学报(自然科学版)2016,Vol.43Issue(10):155-160,6.

一种分析全基因组上位性的新方法∗

A Genome-wide Epistasis Analysis Method Based on Multiple Criteria Fusion

李泽军 1陈敏 2曾利军1

作者信息

  • 1. 湖南大学 信息科学与工程学院,湖南 长沙 410082
  • 2. 湖南工学院 计算机科学与信息学院,湖南 衡阳 421002
  • 折叠

摘要

Abstract

Traditional units of genome-wide association studies have serious defects such as low repeat-ability,difficulty to interpret,and epistasis analysis based on machine learning has troubles such as high computational complexity and insufficient prediction accuracy.This paper presented a new approach for the analysis of genome-wide epistatic.This method uses the framework of two-phase epistatic analysis meth-od.It includes a filtering stage and an epistatic combinatorial optimization stage.The characteristics of the filtering stage presents a multicriteria fusion strategy for the evaluation of genetic loci from multiple per-spectives to ensure that the weak effect of susceptibility loci can be retained,and then,this method uses the multiple criteria sorting fusion strategy to eliminate the low degree of genetic variation associated with disease states.Epistatic combinatorial optimization phase uses the greedy algorithm combination of heuris-tic search space in order to reduce the time complexity.Finally,a support vector machine was used as the epistatic evaluation model.Experiments with different parameters of linkage disequilibrium SNPruler with classical algorithms were compared with the performance of the ACO,and the experiment results show that the method can effectively keep weak effect locus and improve disease forecasting accuracy considera-bly.

关键词

全基因组关联研究/上位性/复杂疾病/智能计算

Key words

GWAS (Genome-Wide Association Study)/epistasis/complex diseases/intelligent computing

分类

信息技术与安全科学

引用本文复制引用

李泽军,陈敏,曾利军..一种分析全基因组上位性的新方法∗[J].湖南大学学报(自然科学版),2016,43(10):155-160,6.

基金项目

国家自然科学基金资助项目(61672223),National Natural Science Foundation of China(61672223) (61672223)

湖南省自然科学基金资助项目(2016JJ4029) (2016JJ4029)

湖南大学学报(自然科学版)

OA北大核心CSCDCSTPCD

1674-2974

访问量2
|
下载量0
段落导航相关论文