| 注册
首页|期刊导航|机械制造与自动化|基于KPCA和BPNN的模拟加载系统油压信号识别技术研究

基于KPCA和BPNN的模拟加载系统油压信号识别技术研究

王东 王新晴 段金辉 梁升 沈新民

机械制造与自动化Issue(5):103-106,4.
机械制造与自动化Issue(5):103-106,4.

基于KPCA和BPNN的模拟加载系统油压信号识别技术研究

Research on Oil Pressure Signal Recognition of Simulated Loading System Based on KPCA-BPNN

王东 1王新晴 1段金辉 1梁升 2沈新民1

作者信息

  • 1. 中国人民解放军理工大学 野战工程学院,江苏 南京210007
  • 2. 69008部队,新疆 五家渠831300
  • 折叠

摘要

Abstract

To solve the signal recognition of the simulated loading system, this paper proposes a recognition method based on Ker-nel Principal Component Analysis ( KPCA) feature extraction and BP Neural Network ( BPNN) . The KPCA is applied to the data ex-traction of the original samples and then, the BP neutral network pattern classifier is used to identify six different working states of the device. The test results verifies the effectiveness of the method above, and some useful references are proveded for the characteris-tic analysis and pattern recognition of the similar hydraulic pressure signals.

关键词

工程机械/模拟加载/油压信号/核主元分析/BP神经网络

Key words

engineering machinery/simulated loading/oil pressure signal/Kernel Principal Component Analysis/BP Neural Net-work

分类

信息技术与安全科学

引用本文复制引用

王东,王新晴,段金辉,梁升,沈新民..基于KPCA和BPNN的模拟加载系统油压信号识别技术研究[J].机械制造与自动化,2016,(5):103-106,4.

基金项目

国家自然科学基金资助项目(51505498) (51505498)

机械制造与自动化

OACSTPCD

1671-5276

访问量0
|
下载量0
段落导航相关论文