| 注册
首页|期刊导航|数据采集与处理|最优实验设计与Laplacian正则化的WNN的非线性预测控制

最优实验设计与Laplacian正则化的WNN的非线性预测控制

任世锦 王高峰 李新玉 杨茂云 徐桂云

数据采集与处理2016,Vol.31Issue(5):927-940,14.
数据采集与处理2016,Vol.31Issue(5):927-940,14.DOI:10.16337/j.1004-9037.2016.05.009

最优实验设计与Laplacian正则化的WNN的非线性预测控制

Nonlinear Predictive Control of WNN Using Optimal Experimental Design and Lapla-cian Regularization

任世锦 1王高峰 2李新玉 1杨茂云 3徐桂云1

作者信息

  • 1. 江苏师范大学计算机科学与技术学院,徐州,221116
  • 2. 浙江大学工业控制国家重点实验室,杭州,310027
  • 3. 中国矿业大学机电工程学院,徐州,221114
  • 折叠

摘要

Abstract

A nonlinear predictive control algorithm based on wavelet neural network (WNN)integrating optimal experimental design with manifold regularization is presented for the complex processes.Firstly, the wavelet hidden nodes are recursively selected from candidate node set to be added into WNN and the optimal parameters of selected nodes are obtained through extended Kalman filter (EKF).The optimum experimental design and Laplacian regularization are then integrated to select salient WNN hidden nodes, and minimum description length (MDL)is utilized to determine the number of hidden nodes.Initial WNN parameters and associated weight updating scheme are provided via an online Gustafson-kesscl (GK)based fuzzy satisfactory clustering algorithm with intuitive interpretation and physic meaning.Fi-nally,a predictive functional control law is given by linearizing WNN.The simulation of industrial coking equipment shows the efficiency of the proposed algorithm.

关键词

小波神经网络/扩展卡尔曼滤波/预测控制/Laplacian正则化/满意模糊聚类

Key words

wavelet neural networks (WNN)/extended Kalman filter/predictive control/Laplacian reg-ularization/satisfactory fuzzy clustering

分类

信息技术与安全科学

引用本文复制引用

任世锦,王高峰,李新玉,杨茂云,徐桂云..最优实验设计与Laplacian正则化的WNN的非线性预测控制[J].数据采集与处理,2016,31(5):927-940,14.

基金项目

国家自然科学基金(60974056)资助项目。 (60974056)

数据采集与处理

OA北大核心CSCDCSTPCD

1004-9037

访问量0
|
下载量0
段落导航相关论文