| 注册
首页|期刊导航|数据采集与处理|基于K-means和图割的脑部MRI分割算法

基于K-means和图割的脑部MRI分割算法

田换 覃晓 元昌安 刘致锦 廖剑平

数据采集与处理2016,Vol.31Issue(5):974-982,9.
数据采集与处理2016,Vol.31Issue(5):974-982,9.DOI:10.16337/j.1004-9037.2016.05.014

基于K-means和图割的脑部MRI分割算法

Brain MRI Segmentation Algorithm Based on K-means and Graph Cut

田换 1覃晓 1元昌安 1刘致锦 1廖剑平2

作者信息

  • 1. 广西师范学院计算机与信息工程学院,南宁,530032
  • 2. 南宁学院信息工程学院,南宁,530200
  • 折叠

摘要

Abstract

To overcome the target boundary prone to be misclassification for an original image when the user-selected seed pixels become less in the graph cut algorithm.An interactive K-means and graph cut algorithm (KMGC)is proposed in the combination of the K-means with graph cut(GC)algorithm and the interactive segmentation with brain magnetic resonance image (MRI).The MRI intensity inhomogeneity is processed by K-means clustering algorithm.On this basis,the graph cut algorithm will further refine the MRI,so as to obtain effective segmentation of white matter and gray matter.We implement exten-sive segmentation experiments using both synthetic and real brain MRIs.Quantitative and qualitative an-alyses are carried out about the experimental results,and the results are compared with other segmenta-tion algorithms.The experimental results show that the KMGC algorithm can effectively divide the brain MRI,and outperform others on the segmentation effect.

关键词

图割/交互式/核磁共振图像/K-均值

Key words

graph cut/interactive/brain magnetic resonance image (MRI)/K-means

分类

信息技术与安全科学

引用本文复制引用

田换,覃晓,元昌安,刘致锦,廖剑平..基于K-means和图割的脑部MRI分割算法[J].数据采集与处理,2016,31(5):974-982,9.

基金项目

国家自然科学基金(61363037)资助项目 (61363037)

南宁市邕宁区科学研究与技术开发计划(20150328A)资助项目。 (20150328A)

数据采集与处理

OA北大核心CSCDCSTPCD

1004-9037

访问量0
|
下载量0
段落导航相关论文