| 注册
首页|期刊导航|物理学报|一种多用户上行放大转发中继系统中快速收敛的信道估计方法∗

一种多用户上行放大转发中继系统中快速收敛的信道估计方法∗

林和昀 袁超伟 杜建和

物理学报2016,Vol.65Issue(21):210201-1-210201-9,9.
物理学报2016,Vol.65Issue(21):210201-1-210201-9,9.DOI:10.7498/aps.65.210201

一种多用户上行放大转发中继系统中快速收敛的信道估计方法∗

A fast algorithm with convergence for channel estimation in multi-user uplink amplify-and-forward relay system

林和昀 1袁超伟 1杜建和2

作者信息

  • 1. 北京邮电大学信息与通信工程学院,北京 100876
  • 2. 中国传媒大学信息工程学院,北京 100024
  • 折叠

摘要

Abstract

Recently, tensor models (or multi-way arrays) play a vital role in many applications, such as wireless communication systems, blind source separation, machine learning, signal (audio, image, speech) processing, chemometrics, data mining, arithmetic complexity, environmental sciences, etc. Parallel factor (PARAFAC) analysis, also known as canonical polyadic decomposition, is a common name for low rank decomposition of tensors. A traditional way to fit the PARAFAC model is the alternating least squares (ALS) algorithm, which can transform a nonlinear optimization problem into some independent linear least squares problems. However, the ALS scheme for computing the decomposition of the tensor is known to converge slowly if one or some modes include nearly collinear columns. Particularly, if the collinearity is presented in all modes, the ALS will end in a“convergence bottleneck”. Hence, it is necessary to develop a robust and fast algorithm to compute the decomposition of the tensor. In this paper, a novel channel estimation algorithm using the Levenberg Marquardt (LM) method based on a third-order tensor model is presented in a multi-user uplink amplify-and-forward (AF) relay system. As the relay nodes all operate with half-duplex mode to aid the transmission, the overall transmission period is partitioned into two transmission sub-processes. In the first transmission sub-process, the users transmit channel training sequence to the relay nodes. This stage requires time block once. During the second transmission sub-process, a set of diagonal amplifying factor matrices are utilized by the relay nodes to amplify the received data. Then, the relay nodes transmit each of the amplified data to the base station. This stage requires time blocks K times. With the help of the channel training sequence and the relay amplifying factor matrices, the received data at the base station can be stacked up into a third-order PARAFAC model. And then based on this tensor model an LM channel estimation algorithm is proposed to provide the individual channel state information of both user-to-relay and relay-to-base station channel links. As the channel sequence is transmitted by the users only once, the proposed scheme has a higher spectral efficiency than the case that the channel sequence is transmitted K times by the users. Numerical experiments are shown to demonstrate the efficacy of the proposed LM channel estimation algorithm. The results are as follows. Firstly, the LM approach has the same channel estimation performance as the bilinear alternating least-squares method. Secondly, the proposed estimator yields much faster convergence speed when the relay amplifying factor matrix is a random matrix or a highly collinear one. Finally, the proposed scheme performs well in both independent identically distributed channels and correlated channels scenarios, which means that the proposed channel estimator can provide the robust and reliable feature for multi-user uplinks AF relay systems.

关键词

张量模型/信道估计/Levenberg Marquardt算法/放大转发中继

Key words

tensor model/channel estimation/Levenberg Marquardt algorithm/amplify-and-forward relay

引用本文复制引用

林和昀,袁超伟,杜建和..一种多用户上行放大转发中继系统中快速收敛的信道估计方法∗[J].物理学报,2016,65(21):210201-1-210201-9,9.

基金项目

国家高技术研究发展计划(批准号:2015AA01A705,2014AA01A701)和中国传媒大学理工科规划项目(批准号:3132016XNG1618)资助的课题 (批准号:2015AA01A705,2014AA01A701)

物理学报

OA北大核心CSCDCSTPCDSCI

1000-3290

访问量4
|
下载量0
段落导航相关论文