| 注册
首页|期刊导航|信息与控制|基于系统辨识算法的风力机桨距系统故障诊断

基于系统辨识算法的风力机桨距系统故障诊断

吴定会 翟艳杰

信息与控制2016,Vol.45Issue(5):563-567,574,6.
信息与控制2016,Vol.45Issue(5):563-567,574,6.DOI:10.13976/j.cnki.xk.2016.0563

基于系统辨识算法的风力机桨距系统故障诊断

Fault Diagnosis for the Pitch System of Wind Turbines Using the System Identification Algorithm

吴定会 1翟艳杰1

作者信息

  • 1. 江南大学轻工过程先进控制教育部重点实验室,江苏无锡 214122
  • 折叠

摘要

Abstract

We propose a fault diagnosis method based on the observer-based multi-innovation stochastic gradient al-gorithm in consideration of the pitch system faults of wind turbines.The proposed algorithm can improve the parameter estimation accuracy by extending the innovation length.With regards the observer canonical state space systems model,the multi-innovation stochastic gradient algorithm combined with the state observer is a-ble to achieve the interactive estimation between the system states and the parameters.Here,the pitch system model is further transformed into the identification model by converting it into a canonical state space model. On the basis of the pitch system faults leading to the change of system parameters,the algorithm is adopted to estimate the systemstate and parameters.Then,the pitch system fault diagnosis problem is transformed into the parameter estimation issue.The simulation results demonstrate that the proposed method is capable of ef-fectively diagnosing the pitch system faults.

关键词

风力机/桨距系统/故障诊断/多新息辨识/状态估计/参数估计

Key words

wind turbine/pitch system/fault diagnosis/multi-innovation identification/state estimation/parameter estimation

分类

信息技术与安全科学

引用本文复制引用

吴定会,翟艳杰..基于系统辨识算法的风力机桨距系统故障诊断[J].信息与控制,2016,45(5):563-567,574,6.

基金项目

江苏省“六大人才高峰”资助项目(WLW-008);国家自然科学基金资助项目 ()

信息与控制

OA北大核心CSCDCSTPCD

1002-0411

访问量3
|
下载量0
段落导航相关论文