| 注册
首页|期刊导航|信息与控制|基于极限学习离散过程神经网络的示功图识别

基于极限学习离散过程神经网络的示功图识别

刘志刚 许少华 李盼池 赵云龙

信息与控制2016,Vol.45Issue(5):627-633,7.
信息与控制2016,Vol.45Issue(5):627-633,7.DOI:10.13976/j.cnki.xk.2016.0627

基于极限学习离散过程神经网络的示功图识别

Indicator Diagram Recognition Based on Extreme Learning Discrete Process Neural Networks

刘志刚 1许少华 2李盼池 1赵云龙3

作者信息

  • 1. 东北石油大学计算机与信息技术学院,黑龙江大庆 163318
  • 2. 山东科技大学信息科学与工程学院,山东青岛 266590
  • 3. 大庆油田采油工程研究院举升研究室,黑龙江大庆 163318
  • 折叠

摘要

Abstract

When a pumping well indicator diagram is diagnosed by traditional artificial neural networks,the model is limited by the synchronous instantaneous input.It cannot reflect the cumulative time effect for continuous input signal and has low diagnostic accuracy.Aiming at solving this problem,we propose an extreme learning discrete process neural network.Three-spline numerical integration is applied to deal with the aggregation of discrete samples and weights in the time-domain.An extreme leaning algorithm is applied to the model′s training and converts it to a least squares problem.The Moore-Penrose generalized inverse matrix and a hid-den layer output matrix are used to compute the output weight.The training speed is enhanced.When the model is used to diagnose five common statuses in the indicator diagram,the discrete time sequence data on the displacement and load are taken as the model input.The experimental results show that the method has higher identification accuracy and faster learning speed than other process neural network.

关键词

示功图离散过程神经元网络/极限学习/Moore-Penrose广义逆/网络训练

Key words

indicator diagram/discrete process neural network/extreme learning/Moore-Penrose generalized inverse/network training

分类

信息技术与安全科学

引用本文复制引用

刘志刚,许少华,李盼池,赵云龙..基于极限学习离散过程神经网络的示功图识别[J].信息与控制,2016,45(5):627-633,7.

基金项目

国家自然科学基金资助项目(61170132);黑龙江省教育厅基金资助项目 ()

信息与控制

OA北大核心CSCDCSTPCD

1002-0411

访问量0
|
下载量0
段落导航相关论文