| 注册
首页|期刊导航|电力系统自动化|基于数据驱动方法的风电机组功率优化

基于数据驱动方法的风电机组功率优化

缪书唯 谢开贵 杨贺钧 王蔓莉 胡博 王曼

电力系统自动化2016,Vol.40Issue(22):7-14,8.
电力系统自动化2016,Vol.40Issue(22):7-14,8.DOI:10.7500/AEPS20160426008

基于数据驱动方法的风电机组功率优化

Power Optimization of Wind Turbine Generators Based on Data-driven Approach

缪书唯 1谢开贵 1杨贺钧 2王蔓莉 1胡博 1王曼1

作者信息

  • 1. 输配电装备及系统安全与新技术国家重点实验室 重庆大学,重庆市 400044
  • 2. 教育部光伏系统工程研究中心 合肥工业大学,安徽省合肥市 230009
  • 折叠

摘要

Abstract

To improve the wind energy production and profit,it is imperative to optimize the power output of wind turbine generator (WTG).This paper extracts the analytical relation between WTG power,wind profile and control variables from historical operation data with a designed feed-forward neural network.Based on such a relation,point-to-point and cluster optimization strategies are developed and used for WTG power optimization,which optimize WTG control variables for maximum WTG power under the wind profile measured.The K-means clustering algorithm is used in the latter strategy to reduce optimization complexity,thus facilitating real-time WTG power optimization.Three new indices of mean power gain (MPG),rate of power gain (RPG) and probability of power gain (PPG) are proposed to quantify the power gains by the optimization strategies proposed.Extensive comparisons are conducted between two proposed strategies and recorded operation data using H56-850 WTG.Results show that both strategies can optimize WTG power output.In addition,cluster strategy with five clustering centers could considerably reduce optimization complexity while achieving similar effectiveness as that of the point-to-point strategy.

关键词

风电机组/风电/神经网络/功率优化

Key words

wind turbine generator/wind power/neural network/power optimization

引用本文复制引用

缪书唯,谢开贵,杨贺钧,王蔓莉,胡博,王曼..基于数据驱动方法的风电机组功率优化[J].电力系统自动化,2016,40(22):7-14,8.

基金项目

国家自然科学基金资助项目(51307185) (51307185)

国家电网公司科技项目(SGCQDKOODJJS1500056)。 (SGCQDKOODJJS1500056)

电力系统自动化

OA北大核心CSCDCSTPCD

1000-1026

访问量0
|
下载量0
段落导航相关论文