| 注册
首页|期刊导航|计算机技术与发展|人工鱼群算法的改进

人工鱼群算法的改进

唐莉 张正军 王俐莉

计算机技术与发展2016,Vol.26Issue(11):37-40,44,5.
计算机技术与发展2016,Vol.26Issue(11):37-40,44,5.DOI:10.3969/j.issn.1673-629X.2016.11.008

人工鱼群算法的改进

Improvement of Artificial Fish Swarm Algorithm

唐莉 1张正军 1王俐莉2

作者信息

  • 1. 南京理工大学 理学院,江苏 南京 210094
  • 2. 海军指挥学院 科研部,江苏 南京 210016
  • 折叠

摘要

Abstract

Artificial Fish Swarm Algorithm ( AFSA) is a new random search optimization algorithm. The preliminary study shows that it has many promising features,but also some disadvantages. Aiming at the problem of AFSA,such as long running time or being in local optimal,caused by uniformly random behavior and constant of congestion factor. Based on symmetric normality random behavior,self-a-daption adjusts the parameter of this behavior,and a large number of unused circuitous searches are reduced,and a more complete search within solution space is obtained for artificial fishes so that a high search efficiency is arrived at. The self-adaption congestion factor is a-dopted and a new fitness function is porposed,increasing the convergence rate of satisfactory solution domain,making the result more sta-ble. Results of experiments show that there is an obvious advantage for this improved method compared with the basic artificial fish-swarm algorithm.

关键词

随机行为/拥挤度因子/适应度函数/人工鱼群算法/优化

Key words

random behavior/congestion factor/fitness function/artificial fish swarm algorithm/optimization

分类

信息技术与安全科学

引用本文复制引用

唐莉,张正军,王俐莉..人工鱼群算法的改进[J].计算机技术与发展,2016,26(11):37-40,44,5.

基金项目

全国统计科学研究计划重点项目(2013LZ45) (2013LZ45)

计算机技术与发展

OACSTPCD

1673-629X

访问量0
|
下载量0
段落导航相关论文