| 注册
首页|期刊导航|电子科技大学学报|基于离散过程神经网络的装备技术状态预测方法

基于离散过程神经网络的装备技术状态预测方法

张耀辉 韩小孩 王少华

电子科技大学学报2016,Vol.46Issue(6):923-928,6.
电子科技大学学报2016,Vol.46Issue(6):923-928,6.DOI:10.3969/j.issn.1001-0548.2016.06.008

基于离散过程神经网络的装备技术状态预测方法

Equipment’s Condition Prediction Based on the Discrete Process Neural Networks

张耀辉 1韩小孩 1王少华1

作者信息

  • 1. 装甲兵工程学院技术保障工程系北京丰台区 100072
  • 折叠

摘要

Abstract

Conventional forecasting methods cannot systematically analyze the aggregation of space and time in multidimensional parameter analysis. To solve the problem, a prediction method based on discrete process neural networks is proposed in this paper. In order to avoid choosing a local optimal solution during the training of the net, the chaotic particle swarm optimization algorithm is introduced in the process of training. Finally, a case study is presented to illustrate the validity of the proposed method.

关键词

混沌粒子群算法/技术状态预测/离散过程神经网络/空间聚合

Key words

chaotic particle swarm optimization algorithm/condition prediction/discrete process neural networks/space aggregation

分类

机械制造

引用本文复制引用

张耀辉,韩小孩,王少华..基于离散过程神经网络的装备技术状态预测方法[J].电子科技大学学报,2016,46(6):923-928,6.

基金项目

部级基金 ()

电子科技大学学报

OA北大核心CSCDCSTPCD

1001-0548

访问量0
|
下载量0
段落导航相关论文