| 注册
首页|期刊导航|电子科技大学学报|基于级联卷积神经网络的视频动态烟雾检测

基于级联卷积神经网络的视频动态烟雾检测

陈俊周 汪子杰 陈洪瀚 左林翼

电子科技大学学报2016,Vol.46Issue(6):992-996,5.
电子科技大学学报2016,Vol.46Issue(6):992-996,5.DOI:10.3969/j.issn.1001-0548.2016.06.020

基于级联卷积神经网络的视频动态烟雾检测

Dynamic Smoke Detection Using Cascaded Convolutional Neural Network for Surveillance Videos

陈俊周 1汪子杰 1陈洪瀚 1左林翼1

作者信息

  • 1. 西南交通大学信息科学与技术学院成都 610031
  • 折叠

摘要

Abstract

The extraction of stable smoke features in complex scenes is a challenging task for video based smoke detection. For this issue, a convolutional neural network (CNN) framework which employs both static and dynamic features of the smoke is proposed. On the basis of analyzing the static features of individual frame, we further explore the dynamic features in spatial-temporal domain to reduce the influence of the noise from environment. Experimental results show that the proposed cascaded convolutional neural network framework performs well in real-time video based smoke detection for complex scenes.

关键词

卷积神经网络/深度学习/纹理特征/视频烟雾检测

Key words

convolutional neural networks/deep learning/texture features/video smoke detection

分类

信息技术与安全科学

引用本文复制引用

陈俊周,汪子杰,陈洪瀚,左林翼..基于级联卷积神经网络的视频动态烟雾检测[J].电子科技大学学报,2016,46(6):992-996,5.

基金项目

国家自然科学基金(61003143,61202191) (61003143,61202191)

电子科技大学学报

OA北大核心CSCDCSTPCD

1001-0548

访问量0
|
下载量0
段落导航相关论文