| 注册
首页|期刊导航|广西科学|线性比式和分式规划问题的分支定界算法

线性比式和分式规划问题的分支定界算法

申培萍 李丹华

广西科学2016,Vol.23Issue(5):392-395,4.
广西科学2016,Vol.23Issue(5):392-395,4.DOI:10.13656/j.cnki.gxkx.20161121.011

线性比式和分式规划问题的分支定界算法

A Branch and Bound Algorithm for the Sum of Linear Ratios Problem

申培萍 1李丹华1

作者信息

  • 1. 河南师范大学数学与信息科学学院,河南新乡 453007
  • 折叠

摘要

Abstract

In this paper,we presents a new branch and bound algorithm for globally solving the sum of linear ratios problem,which is verified by the numerical examples.The algorithm trans-form the problem to its equivalent problem,and establish a relaxational linear programming problem of by using a linear relaxation technique,thus the initial nonconvex programming problem is reduced to a sequence of linear programming problems.The proposed algorithm is convergent to the global minimum of (P)through the successive refinement of the feasible re-gion and solutions of a series of relaxation linear programming,and finally numerical examples are given to illustrate the feasibility and effectiveness of the proposed algorithm.

关键词

线性比式和/全局优化/线性松弛/分支定界/ω分法

Key words

sum of linear ratios/global optimization/linear relaxation/branch and bound/ωdivi-sion

分类

数理科学

引用本文复制引用

申培萍,李丹华..线性比式和分式规划问题的分支定界算法[J].广西科学,2016,23(5):392-395,4.

基金项目

国家自然科学基金项目(11171094)资助。 (11171094)

广西科学

OACSTPCD

1005-9164

访问量0
|
下载量0
段落导航相关论文