| 注册
首页|期刊导航|东南大学学报(自然科学版)|基于潜变量S VM的出行方式预测模型

基于潜变量S VM的出行方式预测模型

陈月霞 陈龙 查奇芬 景鹏 谢君平 熊晓夏

东南大学学报(自然科学版)2016,Vol.46Issue(6):1313-1317,5.
东南大学学报(自然科学版)2016,Vol.46Issue(6):1313-1317,5.DOI:10.3969/j.issn.1001-0505.2016.06.034

基于潜变量S VM的出行方式预测模型

Forecasting model of travel mode based on latent variable SVM

陈月霞 1陈龙 1查奇芬 2景鹏 1谢君平 1熊晓夏1

作者信息

  • 1. 江苏大学汽车与交通工程学院,镇江212013
  • 2. 江苏大学财经学院,镇江212013
  • 折叠

摘要

Abstract

In order to improve the prediction accuracy of the travel mode choice model under small samples,a support vector machine (SVM)algorithm considering the low carbon travel psychologi-cal variables is proposed.Based on the theory of planned behavior (TPB),considering low carbon travel psychological factors,latent variable models with multiple causes and indicators are estab-lished.Substituting the forecasted latent variables into the SVM classifier,a SVM selection model with latent variables is then proposed.The mixed selection parameters are obtained using cross vali-dation optimization,and the model performance is validated based on urban residents' data in Yan-gtze River Delta region.Empirical results show that the established SVM selection model with latent variables has a better prediction accuracy,improved by 4.54%compared with the SVM without la-tent variables,and 2.56%by the traditional model with latent variables.Results prove that the mod-el still has a high precision with small samples.This study provides a theoretical reference for the travel choice model and low carbon travel choice research.

关键词

混合选择模型/支持向量机/多原因多指标/计划行为理论/交叉验证算法

Key words

mixed selection model/support vector machine(SVM)/multiple indicators and multi-ple causes/theory of planned behavior/cross validation algorithm

分类

交通工程

引用本文复制引用

陈月霞,陈龙,查奇芬,景鹏,谢君平,熊晓夏..基于潜变量S VM的出行方式预测模型[J].东南大学学报(自然科学版),2016,46(6):1313-1317,5.

基金项目

国家自然科学基金资助项目(71373105,61573171,51208232)、江苏省“六大人才高峰”资助项目(2015-JY-025)、江苏省高校科研创新计划资助项目(CXZZ12_0663). ()

东南大学学报(自然科学版)

OA北大核心CSCDCSTPCD

1001-0505

访问量0
|
下载量0
段落导航相关论文