| 注册
首页|期刊导航|计算机应用研究|改进自适应微分进化算法求解全局优化问题

改进自适应微分进化算法求解全局优化问题

王世豪 杨红雨 李玉贞 刘洪 杨波

计算机应用研究2016,Vol.33Issue(12):3634-3637,4.
计算机应用研究2016,Vol.33Issue(12):3634-3637,4.DOI:10.3969/j.issn.1001-3695.2016.12.026

改进自适应微分进化算法求解全局优化问题

Improved adaptive differential evolution algorithm for global optimization

王世豪 1杨红雨 2李玉贞 1刘洪 2杨波3

作者信息

  • 1. 四川大学空天科学与工程学院,成都610065
  • 2. 四川大学国家空管自动化系统技术重点实验室,成都610065
  • 3. 上海电器科学研究所,上海200063
  • 折叠

摘要

Abstract

Differential evolution (DE)algorithm has some disadvantages,such as slow convergence speed,low convergence precision and easy to fall into local optimal solution in the early stages of the evolution.The paper proposed an improved adap-tive differential evolution (IADE)algorithm by improving the mutation equation of DE and introducing a new control parame-ters adaption strategy.In the process of the evolution,the control parameters will be dynamically adjusted by comparing individ-ual fitness with average fitness of the parent population.Meanwhile,the paper chose the ten standard functions commonly used for the comparison of optimization algorithm to perform the comparative test of IADE and the other improved DE algorithms,and the experimental results show that IADE algorithm not only can significantly improve the convergence speed and convergence precision,but also has very good robustness,so that IADE algorithm can meet the requirements for the real-time,accuracy and stability of process optimization.

关键词

微分进化/全局优化/控制参数自适应/收敛速度/鲁棒性

Key words

differential evolution/global optimization/control parameters adaption/convergence speed/robustness

分类

信息技术与安全科学

引用本文复制引用

王世豪,杨红雨,李玉贞,刘洪,杨波..改进自适应微分进化算法求解全局优化问题[J].计算机应用研究,2016,33(12):3634-3637,4.

基金项目

国家“863”计划资助项目(2013AA013802);国家空管科研资助项目 ()

计算机应用研究

OA北大核心CSCDCSTPCD

1001-3695

访问量0
|
下载量0
段落导航相关论文