| 注册
首页|期刊导航|计算机应用研究|一种新型非线性收敛因子的灰狼优化算法

一种新型非线性收敛因子的灰狼优化算法

王敏 唐明珠

计算机应用研究2016,Vol.33Issue(12):3648-3653,6.
计算机应用研究2016,Vol.33Issue(12):3648-3653,6.DOI:10.3969/j.issn.1001-3695.2016.12.029

一种新型非线性收敛因子的灰狼优化算法

Novel grey wolf optimization algorithm based on nonlinear convergence factor

王敏 1唐明珠2

作者信息

  • 1. 湖南机电职业技术学院 信息工程学院,长沙410151
  • 2. 湖南大学 计算机与通信学院,长沙410082
  • 折叠

摘要

Abstract

The classical grey wolf optimization (GWO)algorithm has a few disadvantages of low solving precision and high possibility of being trapped in local optimum.This paper proposed a novel grey wolf optimization (NGWO)algorithm for sol-ving unconstrained optimization problems.The proposed algorithm used opposition-based learning strategy to initiate popula-tion,which strengthened the diversity of global searching.Inspired by particle swarm optimization (PSO),this paper proposed an improved convergence factor update equation,which was based on that the values of parameter a are nonlinearly decreased over the course of iterations.The convergence factor was dynamically adjusted to maintain a better balance between global search and local search.Mutation operator was given on the current optimal individual of each generation,thus it could effec-tively jump out of local minima.Experiments are conducted on a set of 10 unconstrained benchmark functions.Based on the results,the proposed NGWO algorithm shows significantly better performance than the standard GWO algorithm.

关键词

灰狼优化算法/反向学习策略/函数优化/非线性

Key words

grey wolf optimization algorithm/opposition-based learning strategy/function optimization/nonlinear

分类

信息技术与安全科学

引用本文复制引用

王敏,唐明珠..一种新型非线性收敛因子的灰狼优化算法[J].计算机应用研究,2016,33(12):3648-3653,6.

基金项目

国家自然科学基金资助项目(61403046);湖南省科学计划资助项目 ()

计算机应用研究

OA北大核心CSCDCSTPCD

1001-3695

访问量0
|
下载量0
段落导航相关论文