| 注册
首页|期刊导航|计算机应用研究|基于独立成分分析与核典型相关分析的WLA N室内定位方法

基于独立成分分析与核典型相关分析的WLA N室内定位方法

张勇 史雅楠 黄杰 李飞腾

计算机应用研究2016,Vol.33Issue(12):3817-3821,5.
计算机应用研究2016,Vol.33Issue(12):3817-3821,5.DOI:10.3969/j.issn.1001-3695.2016.12.066

基于独立成分分析与核典型相关分析的WLA N室内定位方法

WLAN indoor positioning algorithms based on independent component analysis and kernel canonical correlation analysis

张勇 1史雅楠 2黄杰 1李飞腾1

作者信息

  • 1. 合肥工业大学 计算机与信息学院,合肥230009
  • 2. 芜湖创业园留学人员博士后科研工作站,安徽 芜湖241000
  • 折叠

摘要

Abstract

The time-varying character of received signal strength (RSS)in WLAN positioning environment drastically reduces the relevance between RSS signal and position information which result in the low positioning accuracy.Based on this situa-tion,this paper used independent component analysis (ICA)algorithm to reduce the dimensions of RSS signal and their corre-lation,and extracted the independent components;then applied kernel canonical correlation analysis (KCCA)to extract the most correlated canonical features between the independent components of RSS signal and position information;finally em-ployed the traditional positioning algorithms such as weighted K nearest neighbors (WKNN),support vector machine (SVM) to localization.The experimental results show that with the deployment of ICA and KCCA to extract correlated canonical fea-tures,traditional WKNN and SVM positioning algorithms achieve better localization accuracy.

关键词

无线局域网/室内定位/接收信号强度/独立成分分析/核典型相关分析

Key words

WLAN/indoor positioning/received signal strength/independent component analysis/kernel canonical correla-tion analysis

分类

信息技术与安全科学

引用本文复制引用

张勇,史雅楠,黄杰,李飞腾..基于独立成分分析与核典型相关分析的WLA N室内定位方法[J].计算机应用研究,2016,33(12):3817-3821,5.

基金项目

国家科技支撑计划资助项目 ()

计算机应用研究

OA北大核心CSCDCSTPCD

1001-3695

访问量0
|
下载量0
段落导航相关论文