| 注册
首页|期刊导航|微型机与应用|基于K-Means与SVM结合的栅格分区路径规划方法

基于K-Means与SVM结合的栅格分区路径规划方法

张堂凯 罗杰 李龙俊

微型机与应用2016,Vol.35Issue(21):16-19,23,5.
微型机与应用2016,Vol.35Issue(21):16-19,23,5.DOI:10.19358/j.issn.1674-7720.2016.21.005

基于K-Means与SVM结合的栅格分区路径规划方法

Path planning method based on K-Means and SVM combination grid partition

张堂凯 1罗杰 1李龙俊1

作者信息

  • 1. 南京邮电大学 自动化学院,江苏 南京 210023
  • 折叠

摘要

Abstract

In the global path planning of intelligent cleaning robot, the grid method is used to model the working environment of the robot.This paper introduced K-means clustering algorithm and Support Vector Machine (SVM) algorithm, using a combination of K-means clustering algorithm and SVM method for clustering with different constraint conditions.In the gird map containing complex obstacles, raster map can effectively reduce partition.Using ant colony algorithm to simulate the partitioned grid map path planning.It can effectively improve the ant colony algorithm in path planning of raster map of overall efficiency.

关键词

栅格地图/K-Means聚类/支持向量机(SVM)/蚁群算法

Key words

grid map/K-Means clustering/Support Vector Machine (SVM)/ant colony algorithm

分类

计算机与自动化

引用本文复制引用

张堂凯,罗杰,李龙俊..基于K-Means与SVM结合的栅格分区路径规划方法[J].微型机与应用,2016,35(21):16-19,23,5.

基金项目

国家自然科学基金(61203028) (61203028)

微型机与应用

2097-1788

访问量0
|
下载量0
段落导航相关论文