| 注册
首页|期刊导航|微型机与应用|基于改进萤火虫算法的小波神经网络短期负荷预测方法

基于改进萤火虫算法的小波神经网络短期负荷预测方法

刘丹 张腾飞

微型机与应用2016,Vol.35Issue(23):56-58,3.
微型机与应用2016,Vol.35Issue(23):56-58,3.DOI:10.19358/j.issn.1674-7720.2016.23.016

基于改进萤火虫算法的小波神经网络短期负荷预测方法

Short-term load forecasting method of optimized wavelet neural network based on modified firefly algorithm

刘丹 1张腾飞1

作者信息

  • 1. 南京邮电大学自动化学院,江苏南京 210023
  • 折叠

摘要

Abstract

The traditional wavelet neural network is trained by the gradient descent algorithm , and the algorithm can easily lead to premature convergence and trap in local minimum , which affect the training accuracy of the network .In this paper , the firefly algorithm is used to train the wavelet neural network to search the optimal parameters of the network in the global .In order to improve the firefly algorithm ’ s ability of parameter optimization , the value of γis adjusted adaptively in the training process .At the same time , Gauss variation is used to improve the activity of firefly individuals in order to ensure the convergence speed and avoid falling into local minimum .The optimized wavelet neural net-work is applied to short-term load forecasting , and the simulation results show that the improved prediction model has strong nonlinear fitting a-bility and high precision .

关键词

小波神经网络/萤火虫算法/负荷预测/全局寻优

Key words

wavelet neural network/firefly algorithm/load forecasting/global optimization

分类

计算机与自动化

引用本文复制引用

刘丹,张腾飞..基于改进萤火虫算法的小波神经网络短期负荷预测方法[J].微型机与应用,2016,35(23):56-58,3.

基金项目

国家自然科学基金项目(61105082);江苏省“青蓝工程”基金(QL2016);南京邮电大学“1311人才计划”基金(NY2013);江苏省普通高校研究生科研创新计划项目 ()

微型机与应用

2097-1788

访问量0
|
下载量0
段落导航相关论文