| 注册
首页|期刊导航|现代电子技术|基于嵌入式向量和循环神经网络的用户行为预测方法

基于嵌入式向量和循环神经网络的用户行为预测方法

刘杨涛 南书坡 杨新锋

现代电子技术2016,Vol.39Issue(23):165-169,5.
现代电子技术2016,Vol.39Issue(23):165-169,5.DOI:10.16652/j.issn.1004-373x.2016.23.041

基于嵌入式向量和循环神经网络的用户行为预测方法

User behavior prediction method based on embedded vector and recurrent neural network

刘杨涛 1南书坡 2杨新锋3

作者信息

  • 1. 南阳理工学院 软件学院,河南 南阳 473004
  • 2. 河南师范大学新联学院 公共教学部,河南 郑州 450000
  • 3. 南阳理工学院 计算机与信息工程学院,河南 南阳 473004
  • 折叠

摘要

Abstract

In order to further describe the effect of time factor on user behavior,and improve the recommendation effect of the recommendation system,a user behavior prediction method based on embedded vector and recurrent neural network is pro⁃posed by comprehensively considering the long⁃term and short⁃term user behavior features. According to all user behavior data in recommendation system,the users and commodities are embedded into the same feature space. The embedded vector is used to re⁃flect the long⁃term user features. According to the time series of each user′s historic behavior,the user behavior prediction model was built based on recurrent neural network to describe this user′s short⁃term behavior feature. The experiment results show that, the proposed method has better recommendation effect than that of the feature⁃level time series analysis method and other methods.

关键词

循环神经网络/深度学习/嵌入式向量/用户行为预测/时间序列

Key words

recurrent neural network/deep learning/embedded vector/user behavior prediction/time series

分类

信息技术与安全科学

引用本文复制引用

刘杨涛,南书坡,杨新锋..基于嵌入式向量和循环神经网络的用户行为预测方法[J].现代电子技术,2016,39(23):165-169,5.

基金项目

河南省科技攻关重点计划项目(122102210563,132102210215);河南省高等学校重点科研项目计划 ()

现代电子技术

OA北大核心CSTPCD

1004-373X

访问量4
|
下载量0
段落导航相关论文