| 注册
首页|期刊导航|计算机工程与应用|分段Hurst指数感知的流级别分类

分段Hurst指数感知的流级别分类

汤萍萍 王再见 王冬菊

计算机工程与应用2016,Vol.52Issue(24):11-18,8.
计算机工程与应用2016,Vol.52Issue(24):11-18,8.DOI:10.3778/j.issn.1002-8331.1604-0303

分段Hurst指数感知的流级别分类

Complementing flow classification in consideration of piecewise Hurst exponent

汤萍萍 1王再见 2王冬菊1

作者信息

  • 1. 安徽师范大学 物理与电子信息学院,安徽 芜湖 241000
  • 2. 南京邮电大学 通信与信息工程学院,南京 210003
  • 折叠

摘要

Abstract

The dominant methodology of flow identification and classification is based on statistical analysis, which mainly focuses on extracting efficient characteristics. However, its illogical hypothesis of characteristics independency and data independency dwarfs the classification effectiveness. Thus quantities of methods are proposed to resolve the problem of characteristics dependency, but few achievements as to data dependency. Therefore, theory of traffic fractals is introduced to identify and classify flows in consideration of data dependency, which has to be modified and adjusted to fit the practical application. Finally, theoretical evaluations indicate the validity of the revised theory, and series of experiments demonstrate the performance of this method when classifying on coarse size and classifying unknown flows.

关键词

/识别与分类/流量分形/数据相关性/Hurst指数

Key words

flow/identification and classification/traffic fractals/data dependency/Hurst exponent

分类

信息技术与安全科学

引用本文复制引用

汤萍萍,王再见,王冬菊..分段Hurst指数感知的流级别分类[J].计算机工程与应用,2016,52(24):11-18,8.

基金项目

国家自然科学基金(No.61401004) (No.61401004)

安徽省自然科学基金(No.1508085QF133) (No.1508085QF133)

安徽师范大学创新基金(No.901-741407). (No.901-741407)

计算机工程与应用

OA北大核心CSCDCSTPCD

1002-8331

访问量0
|
下载量0
段落导航相关论文