| 注册
首页|期刊导航|气象科技进展|条件非线性最优扰动(CNOP):简介与数值求解

条件非线性最优扰动(CNOP):简介与数值求解

孙国栋 穆穆 段晚锁 王强 彭飞

气象科技进展2016,Vol.6Issue(6):6-14,9.
气象科技进展2016,Vol.6Issue(6):6-14,9.DOI:10.3969/j.issn.2095-1973.2016.06.001

条件非线性最优扰动(CNOP):简介与数值求解

Conditional Nonlinear Optimal Perturbation:Introduction and Numerical Computation

孙国栋 1穆穆 2段晚锁 3王强 1彭飞4

作者信息

  • 1. 中国科学院大气物理研究所,大气科学和地球流体力学数值模拟国家重点实验室,北京 100029
  • 2. 中国科学院大学,北京 100049
  • 3. 复旦大学大气科学研究院,上海 200433
  • 4. 中国科学院海洋研究所,海洋环流与波动重点实验室,青岛 266071
  • 折叠

摘要

Abstract

This paper introduces the deifnition of conditional nonlinear optimal perturbation (CNOP), and the applications of the CNOP in atmosphere and ocean studies. The CNOP approach is expanded as that related to initial perturbation (CNOP-I), related to parameter perturbation (CNOP-P), and the combined both of CNOP-I and CNOP-P, according to the different perturbation types. The CNOP-I approach has been applied to the predictability studies of ENSO events, Kuroshio path anomalies, blocking, nonlinear stabilities of thermohaline circulation and grassland ecosystem. The CNOP-I has been further employed to explore the target observation of typhoon. The sensitive region could be identiifed by using the CNOP-I approach. The forecast skill may be improved by adding more adaptive observations in the sensitive region. The CNOP-P approach has been applied also to Kuroshio path anomalies, nonlinear stabilities of thermohaline circulation and grassland ecosystem. Here, we carried out a numerical simulation how to obtain the CNOP with the Burgers equation through building the tangent linear model and adjoint model. The result shows that the CNOP can be calculated by using the Burgers equation, the tangent linear model and the adjoint model with nonlinear optimization algorithm; It supplies a guide to a beginner to learn the CNOP and a reference for employing the CNOP to other applicable subjects.

关键词

条件非线性最优扰动方法(CNOP)/可预报性/目标观测

Key words

conditional nonlinear optimal perturbation (CNOP)/predictability/adaptive observations

引用本文复制引用

孙国栋,穆穆,段晚锁,王强,彭飞..条件非线性最优扰动(CNOP):简介与数值求解[J].气象科技进展,2016,6(6):6-14,9.

基金项目

国家自然科学基金 ()

气象科技进展

2095-1973

访问量0
|
下载量0
段落导航相关论文