| 注册
首页|期刊导航|现代电子技术|基于图像分割和LSSVM的高光谱图像分类

基于图像分割和LSSVM的高光谱图像分类

楚恒 晁拴社

现代电子技术2016,Vol.39Issue(24):14-17,21,5.
现代电子技术2016,Vol.39Issue(24):14-17,21,5.DOI:10.16652/j.issn.1004-373x.2016.24.004

基于图像分割和LSSVM的高光谱图像分类

Hyperspectral image classification based on image segmentation and LSSVM

楚恒 1晁拴社2

作者信息

  • 1. 重庆邮电大学 通信与信息工程学院,重庆 400065
  • 2. 西南大学 地理科学学院,重庆 400715
  • 折叠

摘要

Abstract

A hyperspectral image classification method based on image segmentation and LSSVM is proposed,which com⁃bines spatial information to realize the hyperspectral imagery classification. Firstly hyperspectral image is segmented with mean⁃shift algorithm,and then dimension reduction of the data in each segmentation region is conducted and LSSVM classification of the data after dimension reduction is carried out. Finally the maximum voting method is used to fuse segmented map and obtain the final classification result. With the proposed method,the similarity matrices of segmented regions are derived and the new training sample set is trained to derive the low rank coefficient matrix,and the eigenvalue equation is built by means of similari⁃ty matrices and low rank coefficient matrix to solve the dimension reduction matrix,and then LSSVM is used to classify the data after dimension reduction. The exp⁃erimental results show that the hyperspectral image classification method based on image seg⁃mentation and LSSVM can effectively improve the classification accuracy of hyperspectral images.

关键词

高光谱图像分类/图像分割/LSSVM/数据降维

Key words

hyperspectral image classification/image segmentation/LSSVM/dimension reduction of data

分类

信息技术与安全科学

引用本文复制引用

楚恒,晁拴社..基于图像分割和LSSVM的高光谱图像分类[J].现代电子技术,2016,39(24):14-17,21,5.

基金项目

重庆市博士后科研项目高分辨率遥感影像核方法分类在地理国情普查中的应用研究 ()

现代电子技术

OA北大核心CSTPCD

1004-373X

访问量0
|
下载量0
段落导航相关论文