非线性薛定谔-麦克斯韦方程无穷多高能解的存在性OA
EXISTENCE OF INFINITELY MANY LARGE SOLUTIONS FOR THE NONLINEAR SCHRÖDINGER-MAXWELL EQUATIONS
利用临界点理论研究了一类非线性Schrödinger-Maxwell方程,对位势V和非线性项f做适当假设,得到了方程无穷多高能解的存在性结果。本文允许V和f(x,t)t变号,即使在定号的情形下,所给出的条件仍比已有的结果弱,并且去掉了几乎所有文献中所做的(),lim0tfxtt→=的假设。与已有文献利用山路定理研究不同,本0文利用喷泉定理,所得结果推广和改进了原有文献的结论。
Based on the critical point theory, we study the existence of infinitely many high energy solutions for a class of nonlinear Schrödinger-Maxwell equations. Under certain assumptions onV and f, we obtain infinitely many large solutions for the equations. Furthermore,V and f (x,t) are allowed to be sign-changing. Even in definite case, our assumptions are weaker than the existing results. Different from mountain pass theorem in previous literatures, we c…查看全部>>
吕定洋
湖南第一师范学院数学与计算科学学院,湖南,长沙 410205
数理科学
薛定谔-麦克斯韦方程变分方法临界点理论喷泉定理高能解
Schrödinger-Maxwell equationsvariational methodscritical point theoryfountain theoremhigh energy solution
《井冈山大学学报(自然科学版)》 2016 (6)
6-10,5
湖南省自然科学基金项目(14JJ7083);湖南省教育厅科学研究项目(14C0253)
评论